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Abstract

We consider three approaches to learning natural resource

models involving spatial relationships, based respectively

on decision tree learning, genetic programming and induc-

tive logic programming. In each case, the results of spatial

learning on a natural resource problem are compared with

the results of non-spatial learning from the same data, and

improvements in predictivity or simplicity of the models

are noted. We argue also that it is highly desirable that

spatial learning systems for natural resource problems in-

corporate mechanisms for the user specification of learn-

ing biases.

 1. Introduction

1.1. Machine Learning for Natural

Resource Problems

With today’s increasing emphasis on environmental limits,

the need for accurate and timely information on natural

resource issues is pressing. In many cases, the information

required for decisions may be expensive to obtain, yet data

on some of the underlying variables is relatively inexpen-

sive and available in enormous quantity. The problem is to

convert this plentiful data into useful information; machine

learning and related data mining techniques provide one

promising means to do so.

There have been a number of such applications (for exam-

ple Barbanente et al 1992; Eklund & Salim 1993; Papp, Dowe

and Cox 1993; Stockwell et al 1990; Walker & Cocks 1990).
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Yet the range is perhaps less than one might expect. Part

of the reason lies in the form of the readily available, in-

dustrial quality learning systems (Breiman et al 1984;

Quinlan 1986). These systems are attribute based, rather

than relational - thus they cannot directly learn about spa-

tial relationships. Yet spatial relationships are at the core of

many, probably most, natural resource problems.

This paper aims to demonstrate the value of spatial learn-

ing, by describing a number of experiments using different

methods which have been carried out at University Col-

lege, ADFA.

Of course, we are not alone in such work. Of recent years,

spatial regression methods have appeared in statistical pack-

ages (Bowman 1997). However it is well known (Stockwell

et al 1990) that discrete machine learning methods out-

perform regression methods on some datasets. Closer to

our approach is the work of  (Dibble 1994), which uses an

evolutionary approach distantly related to the (Whigham

1996) work reported here.

1.2. Why is Spatial Learning Hard

Spatial problems are intrinsically relational rather than at-

tribute based: they are about the relationships between

attributes of particular locations and regions, rather than

simply about the local values of those attributes. While

particular spatial relationships can often be reduced to

spatial attributes (see the discussion below), the reduc-

tion requires a-priori knowledge, about the significance of

particular spatial relationships for the problem at hand,
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which is often not available.

On the other hand, relational learning is intrinsically diffi-

cult. The concept spaces to be searched are orders of

magnitude larger than those encountered in attribute-based

learning.

Furthermore, there are special difficulties with spatial learn-

ing problems. Most attribute-based learning, and much re-

lational learning, makes use of greedy search algorithms,

which require each new element of the learned model to

contribute significantly toward the accuracy of the model.

There is no look-ahead: the new element has to make the

contribution on its own, without the assistance of any other

element. But spatial relationships typically do not make

such isolated contributions: they work together with the

attributes of the related locations to contribute toward

the reliability of the model.

1.3. The Importance of Bias

The machine learning community has gradually come to

appreciate the importance of bias in learning systems, and

indeed the impossibility of the once-holy grail of unbiased

learning (Wolpert and Macready 1995).

In natural resource problems, it is commonly the case that

experts in the field have considerable knowledge about

the likely forms of models, even if they do not know the

exact model at the time.

Taking all this, together with the inherent computational

difficulties of spatial learning, it seems clear that systems

which provide the user with opportunities to control the

bias of the search, and thus reduce the computational cost

of the learning process, will be highly desirable for spatial

learning in natural resource problems.

2. Sample Problems

Our work to date has been particularly based on two natu-

ral resource learning problems. The first is highly atypical,

and is specifically chosen because we already know the

answer to the problem, and can thus assess sensibly how

different learning systems are behaving in relation to that

answer. The second was chosen as a fairly typical example

of a natural resource problem, and indeed has previously

been intensively studied in a purely attribute-based setting

(Stockwell et al 1990)

2.1. The Wetness Index Problem

The wetness index problem derives from a pre-existing

expert system, LMAS (Whigham and Davis, 1989). LMAS

is used to assist with environmental management at

Puckapunyal army base in Victoria, Australia. It predicts, from

meteorological records and spatial databases describing

the site, the likely ground disturbance effects of a given

armoured exercise.

One module of LMAS uses the landform and slope layers

of the GIS describing Puckapunyal to predict the propen-

sity of particular areas to become waterlogged - the wet-

ness index, with 6 possible values: unknown, dry, average,

wet, seasonally waterlogged, waterlogged. This module, like

the rest of LMAS, was derived through the traditional ex-

pert systems process - as an encoding of the pre-existing

knowledge of a geographical expert - and was then vali-

dated by ground-truthing. A map of the wetness index for

Puckapunyal is given in Figure 1.

The wetness index learning problem is this. The system is

given a three-layer dataset consisting of the original

landform and slope layers, together with a new layer con-

sisting of the wetness indices as derived by the wetness

module of LMAS. The dataset consists of 3,272 polygons,

together with a table of the adjacencies between poly-

gons. The system is to learn a new set of rules, which are

to predict the wetness index as accurately as possible from

the landform and slope layers, together with the adjacency

relations.

This particular problem is of interest for three reasons.

First, we know that there is a perfectly accurate model of

this problem - the wetness module of LMAS. Second, we

know that the model involves spatial reasoning, so it is

likely that spatial learning will be useful for the problem.

Finally, we know the form of the LMAS model, so that if a

particular learning system fails to learn well, we can inves-

tigate why it does not discover the LMAS solution. On the

other hand, the problem is artificial, in that the model we
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are attempting to learn is that which best fits the original

expert’s model of the situation, rather than some underly-

ing “real World” description.

2.2. The Greater Glider Problem

The greater glider dataset is described in detail in (Stockwell

et al 1990); briefly, it consists of a 20*20 grid of cells. For

each cell, the values of seven independent variables are

recorded: the degree of development (D - 3 categories);

whether a stream corridor (ST - 2 categories); stand con-

dition from a forestry perspective (SC - 6 categories); site

quality from a forestry perspective (SQ - 4 categories);

floristic nutrients (FN - 4 categories); slope (S - 3 catego-

ries); and erosion (E - 3 categories) (NB in the study area,

all sites were highly eroded, E=3, so the erosion attribute

may be effectively ignored). For each cell, we also have a

value for the putative dependent variable, the greater glider

density (GD - 4 categories, ranging from 0-absent to 3-

abundant). A map is given in Figure 2.

3. Simulating Spatial Learning with
Attribute-Based Systems

The first series of experiments described here were per-

formed with the aim of demonstrating that the capacity to

learn spatial relations could improve the predictivity of

machine learning systems applied to natural resource data.

The data used was the greater glider dataset described

above.

3.1. Experiments

The experiments were conducted using the Rulefinder

decision tree induction system (Pearson 1996). Full details

of the experiments and results are given in (Pearson and

McKay 1996). Briefly, a first experiment was conducted to

provide a baseline for comparison by setting up the condi-

tions as similarly as possi-

ble to the experiments of

Stockwell et al (1996); a

second baseline experi-

ment varied the underly-

ing learning conditions to

be similar to those of our

main experiments as possible, but without incorporating

any spatial information. These experiments led into the

main work, in which spatial relationships, built from the

underlying attributes, were encoded as additional attributes

and added to the dataset.

Taking as an example the underlying attribute “site qual-

ity”, describing the forestry potential of a location, the re-

lationships encoded as attributes for the various experi-

ments were:

experiment 3: distance to nearest location with a particu-

lar value of site quality

experiment 5: whether some adjacent location has a par-

ticular site quality

experiment 4: whether there was an adjacency chain of a

given length (i.e. A adjacent to B adjacent to C ....) to a

location having a particular site quality

Finally, each of the above experiments was split into two

experiments, according to whether values of the learning

attribute - the glider density (at sites other than the par-

ticular location in question) - were incorporated amongst

the spatial relationships encoded (e.g. in experiment 3a,

“distance to the nearest site having a glider density of 3”

was not encoded as an attribute in the dataset; in experi-

ment 3b, it was so encoded).

3.2. Results

Size and accuracy of decision trees induced from the greater

glider dataset.

Results in the two baseline experiments were very com-

parable with Stockwell et al (1990), with error rates of

47.5% and 47.75% respectively, and trees of very similar

structure. Experiments 3 to 5 gave dramatically improved

Experiment 1 2 3a 3b 4a 4b 5a 5b

Tree Size 21 5 27 23 68 13 39 15

Error Rate (%) 47.5 47.75 29.5 29.0 28.75 31.75 34.5 31.75

Std Dev (%) NA 6.74 5.68 3.71 4.64 7.86 6.78 6.46
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error rates, ranging from 28.75% to 34.5%.

The tenfold cross-validation method, which Rulefinder uses

to estimate error rates, also permits the estimation of

standard deviation of the error rates. It is thus possible to

say that the results in experiments 3 through 5 are signifi-

cantly different from the results in experiments 1 and 2

(and thus from the Stockwell et al (1996) results) at the

1% confidence level; but they are not significantly different

from each other.

One other point to note: the trees learnt here may be

approaching the limit of what can be learnt from this data,

due to inherent noise and/or missing variables. As shown

in Stockwell et al, simply looking at cases in which pairs of

cells with the same values for all the independent attributes

nevertheless have differing values of the learning attribute,

gives an error rate of 24.2%, with a standard deviation of

1.2%. While one should be careful in extrapolating this to

spatial learning - since spatial learning in effect provides

additional independent attributes by which cells may be

distinguished - the similarity of these error rates may not

be entirely coincidental.

3.3. Discussion

There is always the possibility that the decision trees in

experiments 3 to 5 are overfitted to the data. The pruning

process in decision tree learning normally provides some

protection against this. However the incorporation of spa-

tially derived attributes in the dataset implies that it is not

possible any longer to guarantee the independence of the

training and test sets, and thus overfitting cannot be ruled

out.

However, consideration of the meanings of the decision

trees gives some degree of protection against overfitting:

on the assumption that the search space of decision trees

is sparsely populated with sensible explanatory trees, it is

highly likely that any overfitting will be accompanied by

meaningless expressions at the tips of the decision trees.

Analysis of experiments 3 to 5 suggests that the largest

decision trees generated - a 68-node tree in experiment

4a, and possibly a 39-node tree in experiment 5a - may be

somewhat overfitted, but that the other treees, which are

roughly comparable in size with those of Stockwell et al

(1996), are unlikely to be overfitted. A detailed discussion

may be found in Pearson & McKay (1996). The smallest

tree, that from experiment 4b, is shown in Figure 3.

Thus our final conclusion is that the incorporation of spa-

tial information into a learning process can lead to signifi-

cant improvements in the predictivity of the models gen-

erated. However, the process used is relatively clumsy. It

requires the experimenter to know ahead of time which

spatial attributes are important, so that they can be incor-

porated into attributes for use in the learning process.

Further, it requires the experimenter to write special-pur-

pose programs to translate the selected spatial relation-

ships into tabular attribute form.

We would naturally prefer that the learning system be able

to discover the important spatial relationships for itself,

SC = 0

GD = 0
any_01_GD1

any_03_SC2

GD = 1

NOT any_01_GD2

GD = 3
NOT any_01_GD3

GD = 2
all_01_D2

GD = 2 GD = 3

GD =  2
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while permitting the user to narrow the focus of the learn-

ing to particular classes of spatial - or other - relationships

if such knowledge is available. Thus a prime focus of our

work has been on learning systems which can work di-

rectly with spatial relationships, but permit the user to

vary the bias of the learning space search.

4. Genetic Programming and Geospatial
Relations

The work on context free grammars for genetic program-

ming (CFG-GP) discussed here is reported in detail in the

doctoral thesis of P A Whigham (1996). It builds upon the

genetic programming paradigm of Koza (1992). However,

in the genetic programming paradigm, the description lan-

guage is a by-product of the GP system and is not amena-

ble to user variation except through re-building the un-

derlying system.

In line with our conviction that useful geospatial learning

systems will require simple mechanisms by which the user

may specify the search space the learning system is to use,

CFG-GP provides a context-free grammar in which the

user defines a grammar for the language the learning sys-

tem is to use for the specific problem (this work follows

on from the Grendel system (Cohen 1994), which used

context free grammars similarly, but within the inductive

logic programming paradigm).

The greater glider dataset contains a number of hard con-

straints. For example, a small proportion of the cells are

rated as “outside the study area”. These cells have their

glider density set arbitrarily to zero. This causes little prob-

lem to deterministic learning systems such as decision tree

systems: these rapidly learn that “outside the study area”

implies “glider density zero”, and are thus free to ignore

those cells from that point on (indeed, this is the top-level

decision in virtually all the decision trees we have gener-

ated from this data).

A stochastic learning paradigm has problems with such

hard constraints, since the system will always be prepared,

even though with low probability, to re-visit these con-

straints and to try alternatives. Whatever mechanism is

used to evaluate the success of the system will thus incor-

porate some penalty for this willingness to try alterna-

tives.

Fortunately, CFG-GP incorporates a mechanism for inves-

tigating this effect. The user may explicitly incorporate the

hard constraint into the search language used by the sys-

tem, so that the option of revisiting the constraint is no

longer available.

4.1. Experiments

CFG-GP was first applied to the greater glider dataset in

non-spatial mode. A number of experiments were con-

ducted, starting off with a simple attribute language de-

scribing the dataset, then extending this with two hard

constraints: the “outside search area” constraint described

above, and a second explicitly requiring the system to learn

descriptions for each of the four glider density classes (oth-

erwise the system may simply ignore density classes which

are sparsely represented in the data).

The language was then extended with additional spatial

expressions. For each possible value V of each of the un-

derlying attributes A, and for each distance D, the system

is permitted to derive the boolean expression determin-

ing whether there is a cell within distance D of the cur-

rent cell, in which the attribute A has the value V.

For computational reasons (genetic programming is

computationally very expensive), the values of D were lim-

ited to be either 1 or 2, though the decision tree work

above suggests that distance values up to 5 may be mean-

ingful in this dataset.

4.2. Results

In the simplest attribute learning example above, the sys-

tem achieved an error rate of 47.5 ± 3.4% (based on 6

trials). Incorporating the hard constraints mentioned above

improved the learning somewhat, to an error rate of 42.9

± 3.2% (6 trials). Finally, addition of spatial expressions gave

error rates of 32.8 ± 1.7% (6 trials).  The best ruleset was:
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if ((stand_condition = rock)

or ((slope > flat within distance 2)

and (stand_condition = regeneration within distance 4)

and (floristic_nutrients > medium within distance 5)))

then glider_density = low

else if ((slope > flat within distance 2)

or (stand_condition = regeneration within distance 4))

then glider_density = medium

else glider_density = high

4.3. Discussion

In non-spatial learning, CFG-GP achieved similar results to

Stockwell et al (1990), and to the Rulefinder results re-

ported above (the incorporation of hard constraints im-

proved the learning, but the improvements are only mar-

ginally significant). Significant improvements were obtained

by the incorporation of spatial information into the learn-

ing; the improvements are very comparable with those

achieved by Rulefinder, providing further confirmation that

the improvements in error rate are real, and not just the

result of overfitting the data.

5. Inductive Logic Programming and
Geospatial Relations

We have previously (McKay 1994) reported negative re-

sults in the application of ILP systems to geospatial learn-

ing problems. Our analysis there pointed out that the lack

of results were not due to inherent limitations of the ILP

paradigm, but were particularly related to specific assump-

tions made in the greedy algorithms used.

Specifically, the systems assumed that useful relationships

either directly reduce dataset noise (without the assist-

ance of subsidiary attributes), or are determinate. Unfor-

tunately, spatial relationships such as distance, relative ori-

entation etc. do not have either of these properties, so

that spatial relationships would never be tested by these

algorithms.

Since that time, we have carried out further experiments

with the more recent Progol system (Muggleton 1995),

which does not make determinacy assumptions. Progol

learns logical rules, in the form of prolog programs. Progol

does not handle noise well, so we have not gained any

useful results in learning from the greater glider dataset.

However experiments with the wetness index dataset have

yielded some interesting results

5.1. Experiments

In the first experiment, progol was run on the wetness

index as described above. The second experiment was iden-

tical, except that the table of adjacencies was deleted from

the dataset, so that progol could only learn attribute de-

scriptions of the dataset.

5.2. Results

Progol learns a complete description of the dataset on

which it is run. If necessary, it will generate rules for the

dataset cell by cell, in order to do so. Unlike Rulefinder

and CFG-GP, it does not provide for a separation of learn-

ing and test datasets. Thus results from Progol do not give

meaningful error estimates. The only meaningful compari-

son we can make is between the sizes of the rulesets learnt

in each run. Note also, that these rules have been learned

from positive data only: since progol was unable to deduce

that “dry” and “average” are incompatable, it was prepared

to learn identical rules for both. Further work, to amelio-

rate this problem, is in progress.

The first run, incorporating adjacencies, described the

dataset with 6 rules, using 20 conditions (note that the

land unit types are ordered):

wi(A,wet) if  land_unit(A,B) and

 B > floodplain_seasonally_inundated

wi(A,dry) if  land_unit(A,B) and

B < dam and B > floodplain_seasonally_inundated

wi(A,average) if  land_unit(A,B) and

B < dam and B > floodplain_seasonally_inundated

wi(A,wet) if  A adjacent_to B and

slope(B,C and C > -3

wi(A,seasonally_waterlogged) if slope(A,B) and

A adjacent_to C and land_unit(C,D) and

D < sand_dunes and D > floodplain_seasonally_inundated

wi(A,waterlogged) if A adjacent_to B and B adjacent_to C and

slope(C,D) and D > -2.
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The second run, omitting adjacencies, required 10 rules

and 40 conditions.

The original expert ruleset, when expressed in the above

language, has 13 rules and 42 literals.

5.3. Analysis

The most important result is that experiment 1, using spa-

tial learning, learnt a very much simpler model of the dataset

than experiment 2, using purely attribute learning. The big

difference lies in only one of the wetness index values: in

experiment 1, “wet” cells are described in one spatial and

one non-spatial rule, using 8 literals. In experiment 2, 5

non-spatial rules are required, using 25 literals.

Secondly, it is interesting that progol has learnt a model

which is simpler, in this language, than the original expert

ruleset. The comparison is not entirely fair, however: the

expert ruleset was originally expressed in a completely

different language, and its present size is partly a result of

the translation process. Moreover, the expert ruleset did

know about such issues as mutual exclusiveness of wet-

ness values. Nevertheless, it is fair to say that the spatial

learning process has produced a ruleset which is smaller

and simpler than the non-spatial process, and of expert

quality in these respects.

6. Conclusions

Learning systems which can take spatial relationships into

account may learn more accurate models than non-spatial

learning systems, in real-World natural resource problems.

The genetic programming and inductive logic programming

paradigms both provide mechanisms with which to attack

such problems. So far, greater success has been achieved

with GP approaches than with ILP, but this does not seem

to be due to any inherent limitations of ILP. Assuming that

ILP systems able to handle both noise and indeterminacy

become available, the choice between the two may come

down to ease of use vs computational complexity: cor-

rectly setting up an ILP system may require greater under-

standing than an equivalent GP system, but the GP system

is likely to use more computational resources. As an indi-

cation, the CFG-GP work reported above required cpu-

days on a SUN SPARC 1000. ILP is also computationally

expensive, but more on a scale of cpu-hours than cpu-

days.

All existing relational learning systems are computationally

expensive; this is unlikely to change, as relational learning

is an inherently difficult task. But experts working with

geospatial datasets typically have considerable knowledge

about constraints on the likely structure of models of those

datasets - often arising from knowledge about the physical

and other processes involved. Thus it is highly desirable

that learning systems for use in geospatial problems per-

mit the user to incorporate this knowledge in the search

strategy of the learning system involved. The Grendel and

CFG-GP systems mentioned above (along with many other

learning systems) give indications of how this may be

achieved. A useful by-product of the use of such biases is

the possibility of assembling a body of knowledge about

useful biases for geospatial learning, and thus of the overall

structure of spatial knowledge.
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