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Abstract.  This is the first part of a two-paper series elaborating the development of a cellular automaton
model of urban development using GIS and fuzzy set approaches. Under the paradigm of fuzzy set theory, this
paper develops a cellular automaton model of urban development based on an understanding of the logistic
trend of urban development processes. The model delimits urban areas as multiple states using a fuzzy
membership function and applies transition rules with linguistic variables to represent the non-deterministic
nature of urban development controls. By implementing the model in ARC/INFO using the Arc Macro
Language (AML) in a GRID environment, experimental scenarios of development of a virtual city under
various conditions are presented. Experimental application of the model to an artificial city showed  realistic
results and demonstrated the model is theoretically feasible and valid. Further work is needed to calibrate the
model when applying it to simulate an actual urban development. In the second part of the two-paper series,
application of the model in simulating the urban development of Sydney in space and over the last three
decades will be demonstrated and discussed.

1. INTRODUCTION

Over the last decade, cellular automata (CA) and
their application in urban modelling have been
rapidly gaining favour among urban researchers
(Batty, 2000, 1998, 1997; Wu and Webster, 2000,
1998; Wu, 1998a, 1998b, 1998c, 1996; Batty, Xie &
Sun, 1999; Clarke and Gaydos, 1998; Batty and Xie,
1997; Batty, Couclelis & Eichen, 1997; Clarke,
Hoppen & Gaydos, 1997; Couclelis, 1997, 1989,
1985; Wagner, 1997; White and Engelen, 1997,
1994, 1993; White, Engelen & Uljee, 1997;
Cecchini, 1996; Itami, 1994). This is because of the
ability of cellular automata ‘to model and visualise
complex spatially distributed processes’ (Takeyama
and Couclelis, 1997:73). Cellular automata are
‘especially appropriate in urban modelling, where
the process of urban spread is entirely local in nature
and aggregate effects, such as growth booms, are
emergent’ (Clarke and Gaydos, 1998:700), i.e., their
behaviour is generated ‘by repetitive application of
the rules beyond the initial condition’ (Clarke and
Gaydos, 1998:700).

Previous studies on urban modelling using cellular
automata have addressed various aspects of urban
development. However, most of these studies regard
urban development as a binary process of non-urban
to urban conversion conducted under the paradigm
of crisp set theory (Wu and Webster, 2000; Wu,
1998a, 1998b, 1998c, 1996; Clarke and Gaydos,
1998; White and Engelen, 1997, 1994, 1993). The
process of urban development resembles a fuzzy
process both spatially and temporally. Spatially,
there is no sharp boundary between an urban built-
up area, urban-rural fringe and non-urban rural land.
Temporally, urban development is a continuous
process, which follows the general trend of a logistic

curve (Herbert and Thomas, 1997; Jakobson and
Prakash, 1971). Although Wu (1998b, 1996)
developed models of urban development using fuzzy
logic control in defining the urban transition rules,
he defined the state of cells under the crisp set
theory as non-urban or urban. The multiple or fuzzy
characteristics of non-urban, partly-urban and urban
states in the process of urban development were not
addressed.

This paper develops a cellular automaton model of
urban development incorporating fuzzy set and
fuzzy logic approaches. Urban areas are delimited
using a fuzzy membership function and transition
rules are applied with linguistic variables to
represent the non-deterministic nature of urban
development controls. Section 2 demonstrates how
development occurs in a cellular space. The impacts
of two basic elements of a cellular automaton - the
scale of cells and the neighbourhood type - on this
development are addressed. In Section 3, the role of
fuzzy set theory in defining the state of cells of an
urban cellular automaton is discussed, followed by
discussions on fuzzy logic control for defining
transition rules of an urban cellular automaton. In
Section 4, the general trend of urban development
over time is used to build a model of urban
development incorporating fuzzy logic controlled
transition rules of a cellular automaton. By
implementing the model in ARC/INFO using the
Arc Macro Language (AML) in a GRID
environment, experimental development scenarios in
a virtual city under various conditions are presented.
Through this experimentation the validity of the
model is verified. Application of the model to a real
city - the metropolitan region of Sydney - will be
presented in the second part of the two-paper series.



2. AN URBAN CELLULAR AUTOMATON
AND ITS DEVELOPMENT

A cellular automaton, or CA for short, is a discrete
dynamic system in which space is divided into
regular spatial units called cells and time progresses
in discrete steps. Each cell in the system has one of a
finite number of states. The state of each cell is
updated according to local rules, i.e., the state of a
cell at a given time depends on its own state and the
states of its nearby neighbours at the previous time
step (Wolfram, 1984). In this section, a cellular
automaton based city is proposed, which consists of

nn× spatial cells. The state of a cell represents an
area subject to specific urban development
processes. Section 2.1 presents a generic principle of
development of a cellular automaton, followed in
Section 2.2 by discussions on the effects of the cell
scale and the type/size of neighbourhood on the
behaviour of the cellular automaton. Examples of
implementing various transition rules in generating
greater reality of development are presented in
Section 2.3.

2.1 Generic principle of development for a
cellular automaton

Let t
xij

S  be the state of a cell ijx  at the location i, j at

time t. t
xij

S  belongs to a finite number of states of

cells in the cellular space. Let 1+t
xij

S  be the state of

the cell at time t+1. Then,
1+t

xij
S  = f( t

xij
S , t

ijx
SΩ ) (2.1)

where 
ijxΩ represents a set of cells at the

neighbourhood of cell ijx , t
ijx

SΩ is a set of states of

cells 
ijxΩ  at time t, and f is a function representing a

set of transition rules.

Consider the cell itself as a member of its
neighbourhood, then Equation 2.1 can be written as:

1+t
xij

S = f( t
ijx

SΩ ) (2.2)

Equation 2.2 can be expressed in a verbal form,
which illustrates a generic principle of development
of a cellular automaton, i.e.

IF something happens in the
neighbourhood of a cell,

THEN something else will happen to the cell at
the following time step.

A cellular automaton model usually consists of a set
of ‘IF-THEN’ statements which imply specific
transition rules. For instance, the famous model
‘Game of Life’ (Gardner, 1972) can be expressed as
three ‘IF-THEN’ statements:

IF there are two or three live cells in the
Moore Neighbourhood of a live cell,

THEN the cell stays alive in the next
generation;

IF there are less than two or more than
three live cells in the Moore
Neighbourhood of a live cell,

THEN the live cell dies in the next generation;
IF there are exactly three live cells in the

Moore Neighbourhood of a dead cell,
THEN the dead cell becomes alive in the next

generation.

In defining the ‘IF-THEN’ statements, the four basic
elements of cellular automaton - the cells, the states,
the neighbourhood and the transition rules - need to
be specified. For an urban system, the cells can be a
locale developing from non-urban to urban; the
states, types of land such as urban or non-urban, or
any specific land use types; the neighbourhood,
regions where development might take place; and
the transition rules, rules that affect transition of
cells from one state to another, implying the process
of development in the locale.

Due to the generic principle of development, cellular
automaton models ‘may serve as a framework for
modelling complex natural phenomena in a way that
is conceptually clearer, more accurate, and more
complex than conventional mathematical systems’
(Itami, 1994:30).

2.2 The scale of cells and the neighbourhood

Scale of cells

For models of spatial phenomena, scenarios
resulting from the tessellation of space at different
scales vary (Figure 1). This is commonly regarded as
a modifiable area unit problem (MAUP). Openshaw
(1984) provides a comprehensive review on the
early research on the modifiable area unit problem.
Fotheringham and Wong (1991) explain that the
modifiable area unit problem is essentially
unpredictable in its intensity and effects in
multivariate statistical analysis and is therefore a
much greater problem than in univariate or bivariate
analysis.

     (a)    (b)              (c)
Figure 1: The modifiable area unit problem

in spatial modelling.
Red cells: urban; green cells: fringe; blue cells: non-urban.

a) an urban area sited in a regional
context; b) the area tessellated into cells at
a small scale; c) the area tessellated into
cells at a large scale. This figure shows
that different patterns of urban, fringe or

non-urban can be achieved by tessellating
the urban area at different scales.

In the application of cellular automaton in urban
development modelling, the scale of cells of a
cellular automaton varies significantly. For instance,
Wu (1998b, 1998c, 1996) used both 28.5-metre and



200-metre cells to model an area of 224 square
kilometres. White and Engelen (1993) constructed a
cellular automaton model with 500-metre grid size
to simulate the urban land use patterns in a set of US
cities; they also modified the model to a ‘high-
resolution’ with 250-metre grid size to simulate
urban land use dynamics in the city of Cincinnati,
Ohio State (White, Engelen & Uljee, 1997:323).
Clarke and colleagues used a basic grid of 300-metre
cells for the San Francisco Bay area (Clarke,
Hoppen & Gaydos, 1997). However, while applying
the model to the Washington/Baltimore region,
calibrations were undertaken at resolutions of 210,
420, 840 and 1680 metres respectively (Clarke and
Gaydos, 1998). Their results show that although not
all rules or factors are sensitive to the change of the
cell scale, the scale of cells does have impacts on
results of the simulation, especially in relation to
some factors such as road and slope factors. They
suggested a hierarchical approach in calibrating the
model by ‘first using coarse data to investigate the
scaling nature of each parameter in a different city
setting, then scaling up once the best data ranges are
found’ (Clarke and Gaydos, 1998:710).

In this paper, the model of urban development was
constructed in a scale-independent mode. However,
when applying the model to simulate the process of
urban development of a specific region, this model
will be calibrated with data at different cell scales.
Effects of the scale of cells on the simulation results
can be evaluated and the model be fitted with the
best data range.

Neighbourhood size/type

According to the theory of cellular automaton, the
global behaviour of a self-organizing system is
governed by locally defined transition rules. For an
urban system, a fundamental question is to what
extent urban development is a locally specified
process (Wu, 1996). Some factors, such as slope and
height of land affect urban development in a small
area base; others such as urban planning and the
transportation networks are global controls over the
whole area. Moreover, developments in information
technology and telecommunications have had
fundamental consequences for the patterns and
processes of urban change throughout the world
(Herbert and Thomas, 1997).  These factors affect
urban development in a universal way. In practice,
both small and large neighbourhood sizes have been
applied to models of urban development. The former
being a nine-cell Moore Neighbourhood as was
applied in Clarke and Gaydos (1998), Wu (1998a,
1998b, 1998c, 1996) and Clarke, Hoppen and
Gaydos (1997), and the latter being 113 cells
surrounding a cell in question, as was applied in
White and Engelen (1994, 1993). No particular
validation on the size of neighbourhood in cellular
automata based urban models has been explored.
However, most applications of cellular automaton
models in urban research apply a larger
neighbourhood size than applications in natural

sciences (Batty and Xie, 1994). This is probably
because of the difficulty in justifying transition rules
in behavioural terms (Wu, 1996) and the existence
of distance-decay effects of the neighbouring cells to
the central cell in question (Wu, 1996; White and
Engelen, 1994, 1993).

Regardless of the size of the neighbourhood, the
type of neighbourhood also has significant impacts
on the behaviour of a cellular automaton. Li and Yeh
(2000) shows that the use of a rectangular
neighbourhood such as the Moore Neighbourhood
might produce significant distortions between cells
at different directions from a circular object (Li and
Yeh, 2000).

In fact, the application of a rectangular
neighbourhood in a cellular automaton model can
produce distortion on an object of any shape. This is
due to the existence of distance-decay effect of the
neighbouring cells on the central cell in question
(Figure 2). The distortion is especially significant
when a large neighbourhood size applies, which can
be eliminated by applying a circular neighbourhood.

Figure 2: Distortion produced by a rectangular
neighbourhood

C is the processing cell. For a rectangular
neighbourhood of 7 by 7 cells, the effect of

cell A on the processing cell (C) differs from
that of cell B, although both A and B are in
the same row of the neighbourhood. This is
because the distances from the centres of A
or B to the processing cell C are different.

In this paper, a circular neighbourhood was defined
by specifying a radius in cell(s) from the centre of
the processing cell. Any cell centre encompassed by
the circle was included as a neighbour of the
processing cell. Three different radiuses representing
a small, a medium and a large neighbourhood size
were tested (Figure 3). The radius of the small
neighbourhood size was set to one-and-a-half cells
with the medium two-and-a-half cells and large
three-and-a-half cells respectively. In comparison
with the simulation results, impacts of these
neighbourhood sizes on the model’s output were
assessed with the model.



Figure 3: Three sizes of neighbourhood
Small neighbourhood: Turquoise cells;
Medium neighbourhood: Turquoise and

green cells; Large neighbourhood: Turquoise,
green and blue cells.

2.3 Generating greater reality with transition
rules

Development of a cellular automaton is controlled
by a number of transition rules. These transition
rules are usually expressed as a set of ‘IF-THEN’
statements, which are intrinsically simple. However,
these simple rules can generate complex patterns of
development. Consider a locale with 100 by 100
cells, each representing a square area of 2500 square
metres. Only five cells at the centre of the area were
developed into urban state (Figure 4, t = 0). Assume
that the geographical condition of all cells in this
area is identical and the only force driving the
development of cells is the number of developed
cells in the neighbourhood of a cell in question,
implying the growth of new urban cells from the
urbanized cells. In an 8-cell neighbourhood (the
Moore Neighbourhood), the transition of the state of
cells is governed by the following rule:

IF there are three or more developed cells
in the Moore Neighbourhood of a cell,

THEN the cell is developed.

The model generates a scenario of urban
development as shown in Figure 4.

Figure 4: A CA generated urban development in a
plain area (Moore Neighbourhood)

Red: urban; Grey: non-urban; t: time step.

In a real situation the geographical condition of an
area can never be identical; therefore, there are other
rules controlling the transition of the state of cells. In
this case, more IF-THEN statements need to be
added to represent different transition rules. For
instance, in the above example, if there is a road
from the centre to the northeast part of the area,
more development can occur along the direction of
the road. Therefore, another IF-THEN statement
needs to be added to the first rule to implement the
road attracted development.

IF there are one to two developed cells in
the Moore Neighbourhood of a cell, and
there is a road running through this cell,

THEN the cell is developed.

With these two rules, the scenario of urban
development in this area changes, as shown in
Figure 5.

Figure 5: A CA generated urban development with
the effect of a road (Moore Neighbourhood)
Red: urban; Grey: non-urban; Yellow: road;

t: time step.

In addition to the existence of a road, there may have
a river across the centre of the city, and a cell cannot
be developed if the river runs across it. In this case,
another rule can be added to the cellular automaton
to illustrate the constraint of this factor, which can
be expressed as follows:

IF a cell crosses a river,
THEN no development will happen to that cell.

Again, with the implementation of this new rule, the
pattern of development in this area changes, as
shown in Figure 6.

Figure 6: A CA generated urban development with
the effects of both a road and a river (Moore

Neighbourhood)
Red: urban; Grey: non-urban; Yellow: road;

Blue: river; t: time step.

Although the above example is a very simplified
one, it provides a general idea of how locally made
transition rules can be implemented in a cellular
automaton model, and how these rules can be
applied to simulate the complex behaviour of
systems in a cellular space. However, rules
implemented in these examples were all
deterministic, which were based on classical set
theory. Recent development shows that the transition
rules of a cellular automaton are not restricted to
only deterministic forms. More flexibility in
defining these rules such as the application of
probability concept and fuzzy logic has been tested
(Wu, 1996; White and Engelen, 1993). As urban
development is the result of both physical
constraints and human decision-making behaviours
which are characterized with uncertainty and
fuzziness, applications of fuzzy set theory and fuzzy
logic control seem attractive in defining the rules
controlling urban development.

3. URBAN DEVELOPMENT AND FUZZY
SETS

Urban development is a process of physical
concentration of people and buildings (Herbert and
Thomas, 1997). This is a continuous process in



space and over time which resembles a fuzzy
process in both its definition of urban areas and the
factors controlling the development. The fuzzy
characteristics of urban development imply the
applicability of the fuzzy set approach in modelling
the process of this development.

3.1 Urban state and fuzzy set

Representation of geographical boundaries

Traditionally, it is very common to use thematic
maps for the representation of geographical
phenomenon (Woodcock and Gopal, 2000; Wang
and Hall, 1996). In thematic maps, the use of
categories has followed classical set theory, where
each location is assumed to belong to a single
category; the boundaries between different
categories are represented as sharp lines (Woodcock
and Gopal, 2000; Burrough, 1986). This
representation might be accurate when dealing with
cadastral, census or administrative boundaries that
are ‘sharply defined’ (Wang and Hall, 1996:574).
However, it is not accurate in representing
boundaries of land features with continuously
changing properties, such as soil quality, land cover
or population densities as such boundaries are rarely
sharp or crisp. In this case, the representation of
geographical boundaries based on crisp set theory
may lead to misunderstanding of the information
represented (Wang and Hall, 1996).

Like many dynamic processes of geographical
phenomena, urban development is a continuous
process both spatially and temporally. Spatially, an
urban area is normally defined as an area with high
population density and the dominance of non-
agricultural land. This is quite a fuzzy definition and
there is a variety of differences in determining how
high the population density should be before an area
can be regarded as urban. Moreover, all cities are
surrounded by rural or natural land and there are no
sharp boundaries between an urban built-up area and
its non-urban hinterland. Between the well-
recognized urban land use and the area devoted to
agriculture, there exists ‘a zone of transition in land
use, social and demographic characteristics, lying
between a) the continuously built-up area and
suburban areas of the central city, and b) the rural
hinterland, characterized by the almost complete
absence of non-farm dwellings, occupations and
land use’ (Pryor, 1968:206). This ‘zone of transition’
is a place where both urban and non-urban features
occur, which has been broadly termed as ‘fringe’ or
‘rural-urban fringe’ (Bryant, Russwurm &
McLellan, 1982; Pryor, 1968). This fringe area has
become the most vigorous part of development in
the rural-urban continuum and has attracted much
attention in research. However, due to its complexity
in both spatial and socio-economic features, its
constant changing characteristics and the diversity of
the extent of development in this area, different
concepts or terminology have been applied in
addressing such research, such as ‘suburb’, ‘fringe’,

‘urban fringe’, ‘rural fringe’, ‘inner fringe’, ‘urban
shadow zone’, ‘exurban zone’ or even ‘rurban
fringe’ (Bryant, Russwurm & McLellan, 1982;
Carter, 1976; Kurtz and Eicher, 1958-1959;
Wehrwein, 1942). Obviously, this terminology is
imprecise making the study of the spatial structure
of urban systems very complex and less comparable
(Kurtz and Eicher, 1958-59).

Temporally, if an area has been developed from one
state (non-urban) to another (urban) at a certain
period of time, development has actually taken place
continuously within this period. Therefore, it is
difficult and inaccurate to define a sharp time spot
when the actual change of state occurred.

Therefore, the basic problems referring to the
representation of geographical boundaries are
twofold:

• How to represent spatial changes to
continuous geographical boundary?

• How to represent temporal changes to
continuous geographical boundary?

The development of fuzzy set theory and its
application for representing geographical
phenomena have provided a solution in dealing with
such problems. Unlike crisp set theory where a
location in a landscape either belongs to a map
category exclusively or it does not belong to it at all,
fuzzy sets allow partial belonging represented by a
grade of membership in this fuzzy set. The following
sections present the terminology of fuzzy set theory
and its application in delimiting urban areas.

Fuzzy set theory

Fuzzy set theory was developed in the 1960s by
Zadeh (1971, 1965, 1962). This theory was proposed
to extend crisp set theory in order to deal with
continuous classifications. A set is fuzzy if an
element can belong partly to it, rather than having to
belong completely or not at all. Therefore, fuzzy set
theory begins with the assignment of membership
grades to elements which are not restricted to 0
(non-membership) or 1 (full-membership), but
which may lie somewhere in the interval from 0 to 1.
Mathematically, a fuzzy set can be expressed as
follows:

Let X be a collection of objects, whose generic
element is denoted as x. Thus X = {x}. A fuzzy set
A in X is a set of ordered pairs, 

A = {(x, Aµ (x)) | x ∈ X} (3.1)
where Aµ (x) represents the grade of membership of

x in A, which associates with each x a real number
in [0,1].

Consider a city in a regional context. Within this
region, some areas have been fully developed as
urban built-up areas, such as the central business
district (CBD), the highly populated residential areas
or the concentrated industrial zones. Some areas
remain in a non-urban state, such as the surrounding
open or agricultural land or the regional recreational



land. These areas are identified as non-urban areas.
Except for the extreme categories, there are areas
that have been developed to some extent, such as
areas with low to medium population density or with
both agriculture and industries. These areas can be
categorized as partially developed areas. The
temporal dimension of this development is similar to
that of its spatial dimension. If an area has been
developed from non-urban to urban built-up area
within a certain period, development has been a
continuous process. Therefore, within this time span
the area could have been partially developed to some
extent. To illustrate the extent of development of this
city in space and over time, a fuzzy concept of
‘urban’ or ‘non-urban’ can be defined.

Let X be a collection of cells representing an area in
a regional context. ijx  is a generic form of a cell in

X. An urban fuzzy set urbanS  can be defined as a set
of ordered pairs,

urbanS  = {( ijx , 
urbanSµ ( ijx ))| ijx ∈ X} (3.2)

where the 
urbanSµ ( ijx ) is a membership function of

the cell ijx  in the fuzzy set urbanS , the value of

which represents the state a cell undergoing an urban
development process. Similarly, a non-urban fuzzy
set can also be defined as:

urbannonS −  = {( ijx , 
urbannonS −

µ ( ijx ))| ijx ∈ X} (3.3)

where the 
urbannonS −

µ ( ijx ) is a membership function of

the cell ijx  in the fuzzy set urbannonS − .

The membership function determines how and to
what degree a cell belongs to the set. It depends on
the extent a cell is being developed on the urban
growth process. The closer the grade of membership
is to 1, the higher the degree of membership of the
cell in that fuzzy set. An example of the fuzzy
membership functions 

urbanSµ ( ijx ) and 
urbannonS −

µ ( ijx )

is presented in Figure 7.
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Figure 7: Example membership functions
of urban and non-urban fuzzy sets

Stages s0 to s10 represent different extents of
urban development, from none to fully developed.

In this example, if a cell has a membership grade of
0.8 in the urban fuzzy set, it has been developed to a
higher extent than a cell with a membership grade of
0.3. Conversely, a cell with a membership grade of
0.8 in the non-urban fuzzy set has been less
developed than a cell with a membership grade of
0.4 in that set. With this terminology, the boundary
between non-urban and urban areas can be

understood not as a sharp line, but a region with
continuous change on the scale of membership.

Obviously, the membership function is a crucial
component of a fuzzy set. Different membership
functions represent different fuzzy sets, even though
they may have similar context. Figure 8 illustrates
three membership functions, one using a linear
function, one using an exponential function and one
using a logarithmic function. Each function
represents a different fuzzy set although they all
have similar context which is ‘a class of cells been
developed’. To determine whether a particular
function is suitable for a set or not depends on the
context of a particular application.
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Figure 8: Variations of fuzzy membership functions
This figure illustrates three different membership
functions. s0 to s10 in the X-axis represent
different extents of urban development. They
define three different fuzzy sets although they
have similar content, i.e., before s1, the area is
undeveloped and after s9 the area is fully
developed. Development has taken place in areas
with an urban extent between s1 and s9.
However, their membership grades vary, which
are determined by their membership functions.

3.2 Defining urban states with fuzzy set
approach

Consider the fuzzy set ‘urban’ defined in Equation
3.2:

urbanS  = {( ijx , 
urbanSµ ( ijx ))| ijx ∈ X}

The value of its membership function 
urbanSµ ( ijx )

ranges from 0 to 1, which represents the state a cell
undergoing an urban development process. For
instance, if a cell has a membership grade of 0, this
cell has not been developed, i.e., it is in a non-urban
state; if a cell has a membership grade of 1, it has
been fully developed as an urban area, i.e., it is in an
urban state. Cells with a membership grade between
0 and 1 have been developed to some extent,
although not fully developed. To define a
mathematical formula for the fuzzy membership
function, a measurable representation of the extent
of urban development of cell ijx  in the urban fuzzy

set urbanS  needs to be defined.



Measurement of urban development

A number of approaches have been applied to
measure the extent of urban development. These
include the use of detailed rules of the size and
density of population for the definition of urban
areas, the use of pure population densities and the
use of the remote sensing approach. As cities are
physical agglomerations of population and housing,
it is thought that there exists a threshold along the
population-size continuum of settlements at which a
village becomes a town, although this threshold
varies significantly in space and over time (Herbert
and Thomas, 1997). Various rules on the size and
density of population have been applied for the
definition of urban areas. For instance, in several
Scandinavian countries, including Denmark and
Sweden, any settlement which has more than 200
inhabitants is classified as urban in the national
census (Herbert and Thomas, 1997); in the United
States, the ‘urban areas’ comprise places with 2,500
or more inhabitants and some special types of areas
having a density of 1,500 inhabitants per square mile
(about 580 inhabitants per square kilometre) (USBC,
1960). In Canada, an urban area should have a
minimum population concentration of 1,000 and a
population density of at least 400 persons per square
kilometre based on the previous census population
counts (Statistics Canada, 1996). Many countries
impose much higher thresholds, such as Greece,
with 10,000 inhabitants and Japan with 30,000
(Herbert and Thomas, 1997).  The diversity of this
threshold largely relates to the social context of the
country. For instance, considering the physical
geography of Scandinavia and the ways in which its
settlements evolved over time, a settlement with
over 200 permanent inhabitants may well be
regarded as urban. On the other hand, in a country
like Japan with a relatively limited land area and
considerable population pressure, almost all
settlements exceed such a low threshold of 200
inhabitants and a threshold of 30,000 inhabitants
seems more realistic in delimiting its urban extent
(Herbert and Thomas, 1997).

In addition to the use of the combination of
population size and density, a pure criterion of
population density was also applied in delimiting
urban areas. Gryztzell (1963) presented a method
based on population densities alone. He argued that
fair comparison could only be made when the
densities involved were similar. He therefore
attempted to delineate areas where minimum
densities could be equated using the smallest
administrative unit. By calculating the population
densities, he worked outward from the large cities
until points were reached where the densities fell
below a given figure.  This allows a line to be drawn
around the city so that all areas with a density over a
given threshold were included. Gryztzell (1963)
identified a series of threshold values of this density
and used them for comparative purposes. However,
his approach overlaps with his definition of

delimiting urban area using population density as a
sole criterion (Carter, 1976).

Australia is a country with high urban population
and extensive living space. By the early 1970s, 86
percent of all Australians lived in towns or cities
(Frost and Dingle, 1995). However, all capital cities
developed their suburbs before the centres were fully
built-up, in the hope of ‘creating healthy and
spacious living conditions’ (Frost and Dingle,
1995:20). By the start of the twentieth century
Australia’s major cities had either developed a low-
density townscape with significant decentralization
of housing and jobs, or were beginning to sprawl at
the edge of their old compact cores. Compared to the
concentrated cities of Europe and eastern North
America, these cities were of remarkably low
density and cover immense areas of ground (Frost
and Dingle, 1995). Under this background, the
criteria for delimiting its urban areas in relation to
population size and density are quite low. The
delimitation criteria for urban centres currently in
force in Australian Standard Geographical
Classification (ASGC) are based on those developed
by Linge (1965) with subsequent amendment by the
Conferences of Statisticians of Australia in 1965 and
1969 and the Review of the Australian Bureau of
Statistics (ABS) Statistical Geography in 1988
(ABS, 1999). The core points of these criteria are as
follows: urban centres with a population of 20,000
or more consist of a cluster of contiguous urban
census collector’s districts (CCDs) and other urban
areas. CCDs classified as urban include the
following:

• All contiguous CCDs which have a
population density of 200 or more persons
per square kilometre shall be classified as
urban;

• A CCD consisting mainly of land used for
factories, airports, small sports areas,
cemeteries, hostels, institutions, prisons,
military camps or certain research stations
shall be classified as urban if contiguous with
CCDs which are themselves urban;

• A CCD consisting mainly of land used for
large sports areas, large parks, explosives
handling and munitions areas, or holding
yards associated with meatworks and
abattoirs shall be classified as urban only if it
is bordered on three sides by CCDs which are
themselves classified as urban;

• Any area which is completely surrounded by
CCDs which are urban must itself be
classified as urban.

For urban centres with a population between 1,000
and 19,999, their urban boundaries are delimited
subjectively by the inspection of aerial photographs,
by field inspection and/or by consideration of any
other information that is available. All contiguous
urban growths are to be included (even though these
would not necessarily occur if the density criterion
were applied), together with any close but non-
continuous development which could be clearly



regarded as part of the urban centre. However, for
urban centres which contain a population
approaching 20,000 the objective criteria applied for
urban centres with 20,000 people should also be
considered (ABS, 1999).

More recently, with the development of remote
sensing technology, various researchers have
examined applications of remotely sensed data for
identification of urban land-cover characteristics and
their change over time (Ward, Murray & Phinn,
2000; Hepner, et al., 1998; Barnsley and Barr, 1997,
1996; Harris and Ventura, 1995; Mesev, et al., 1995;
Forster, 1993, 1983; Gong and Howarth, 1990;
Moller-Jensen, 1990). Five recurrent research
themes have been identified in this regard, which
are: 1) the delimiting of land-cover and land use
types; 2) assessment of the utility of texture
measures to aid in separating urban land-cover and
land use types; 3) mapping areas of impervious and
pervious surfaces for input into energy and moisture
flux models; 4) mapping land-cover and land use
change in urban area; and 5) application of empirical
models to estimate biophysical, demographic and
socio-economic variables (Phinn, et al., 2001).
Although these researchers have met mixed success,
their approaches were developed based on classical
set theory. In other words, they understood the
boundary between an urban area and its non-urban
hinterland as a sharp line.

As cities are physical concentrations of population
and housing, population or dwelling densities are
measurable criteria in delimiting the extent of urban
development. Therefore, it is appropriate to use
population and/or dwelling densities as criteria to
delimit urban areas. In particular, these criteria allow
for the application of fuzzy set theory to define a
fuzzy concept of urban areas. In this thesis, instead
of defining a sharp boundary between urban and
non-urban areas, the fuzzy set approach to
delimiting the extent of urban development with
population density is proposed. These criteria are
flexible and they can be adjusted or calibrated
according to different conditions when applied to
individual cities.

Fuzzy membership function in delimiting urban
areas

To define a fuzzy membership function for
delimiting urban areas in this paper, a population
density criterion was employed. This population
density value has been adjusted based on a number
of other factors, such as dwelling density, major
infrastructure such as sewerage and drainage supply,
type of land use depicted from satellite images and
the percentage of population dependent on non-
agricultural industries. For example, if an area has a
low population density but the dwelling density is
high or if an area has intensive type of urban land
use, the population density needs to be adjusted to a
higher value. In contrast, if an area has a relatively
high population density but most of its land is used
as farms, the population density value needs to be

reduced to some extent. Such factors were evaluated
when applying the model to simulate urban
development of metropolitan Sydney.

A common approach for defining urban areas is
evident from various countries using census data,
i.e., an area is regarded as urban if it reaches a
certain value of population density. Due to the
widespread adoption of this approach the
assumption was also applied in this paper: if an area
has a population density less than a certain value, it
is regarded as non-urban, and the grade of
membership of this area in the urban fuzzy set is 0.
If an area has a population density higher than
another threshold value, it is regarded as fully urban
built-up area, and therefore its membership grade is
1. The lower and upper threshold values of
population density can vary significantly from one
country to another, or even from one city to another.
Therefore, these threshold values need to be defined
individually according to situations in different
countries or cities. For example, the lower threshold
of population density excluding an area from being
regarded as urban can be 200 person/ 2km  in
Australia, while this threshold in Canada and the
U.S. should be 400 person/ 2km  and 580 person/ 2km
respectively. With these threshold values, the
membership function of areas in the urban fuzzy set
can be defined as a function of its population
density.

Let 0ρ  and 1ρ  be the lower and upper thresholds of

population density respectively in delimiting urban
areas. A simple linear membership function was
employed, as is shown in Equation 3.4:













≥

∈<≤
−

−

<

=

1

10
01

0

0

1

)(

0

)(

ρρ

ρρρ
ρρ

ρρ

ρρ

µ

ij

ij

ij

ij

x

ijx
x

x

ijurban Xxx
(3.4)

With this membership function, the population
density values can be converted into the grade of
membership. This involves matching the density
measurement against the membership function
(Figure 9), which is called a fuzzification process
(Berenji, 1992). Through this conversion, each cell
in the urban fuzzy set receives one value of
membership grade, which represents the state of the
cell in the urban fuzzy set. For instance, if the
population density of a cell is less than the lower
threshold, it receives a membership grade of 0. In
this case, the state of the cell is regarded as ‘non-
urban’. If the population density of a cell is higher
than the upper threshold, it receives a membership
grade of 1, the state of which is regarded as ‘urban’.
All other cells receive a membership grade between
0 and 1, representing their extent of development in
this urban fuzzy set. Their states in the urban fuzzy
set are termed ‘partly-urban’. Therefore, instead of
using a binary definition of non-urban and urban,
multiple states in delimiting urban areas can be
applied to simulate the continuous process of non-
urban to urban conversion.



Figure 9: Matching a density measurement
with the membership function

urbanSµ is the membership function of cell ijx  in

the urban fuzzy set; 0ρ  and 1ρ  are the lower
and upper thresholds of population density

respectively in delimiting urban areas.

3.3 Fuzzy logic control in cellular automaton
urban modelling

Urban development as a fuzzy process is not only
represented in delimiting its urban extent, it is also
represented in the factors driving such development.
As a result of both physical constraints and human
decision-making behaviours, urban development is a
fuzzy logic controlled process. This section
introduces the methodology of fuzzy logic control in
the simulation of urban development. As fuzzy logic
control is developed based on two important
concepts - the linguistic variables and fuzzy logic,
these concepts  are discussed first, followed by
discussions on the application of fuzzy logic control
in urban modelling, especially in models using
cellular automaton approach.

Linguistic variables

 ‘In retreating from the precision in the face of
overpowering complexity, it is natural to explore the
use of what might be called linguistic variables, that
is, variables whose values are not numbers but
words or statements in a natural or artificial
language’ (Zadeh, 1973:9). An easy way to
understand the notion of a linguistic  variable is to
regard it as a variable whose numerical values are
fuzzy numbers or as a variable the range of which is
not defined by numerical values but by linguistic
terms. Zadeh (1973:75) provided a formal definition
of linguistic variables as follows:

A linguistic variable is characterized by a
quintupe (x, T(x), U, G, M~ ) in which x is
the name of the variable; T(x) (or simply T)
denotes the term set of x, that is, the set of
names of linguistic values of x, with each
value being a fuzzy variable denoted
generically by x and ranging over a universe
of discourse U which is associated with the
base variable u; G is a syntactic rule (which
usually has a grammatical form) for
generating the name, X, of values of x; and
M~  is a semantic rule for associating with
each X its meaning, M~ (x), which is a fuzzy
subset of U. A particular X - that is, a name

generated by G - is called a term (Zadeh,
1973:75).

There are some special linguistic terms such as very,
more or less, fairly and extremely which modify the
meaning of other linguistic terms. These are called
linguistic hedges (or simply hedges or modifiers).
Mathematical models frequently used for modifiers
include

Concentration: 
con(Ã)µ (u) = 2

Ã ))(( uµ (3.5)

Dilution:
dil(Ã)µ (u) = 2/1
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Fuzzy logic and fuzzy logic control

Fuzzy logic (Zadeh, 1973) is an extension of
classical formal models of reasoning into models
that incorporate fuzziness. The fundamental
difference between classical logic and fuzzy logic is
in the range of their truth-values. In fuzzy logic, the
truth or falsity of fuzzy proposition is a matter of
degree. Assuming that truth and falsity are expressed
by values 1 and 0 respectively, the degree of truth of
each fuzzy proposition is expressed by a number in
the unit interval of [0, 1]. In fuzzy logic, the number
of truth-values is, in general, infinite. Instead of
using numbers, the truth-values are linguistic
variables (or terms of the linguistic variable truth).
The terms of the linguistic variable ‘truth’ can be
tabulated as a finite number of terms, such as true,
very true, false, more or less false, very false, and so
on. With this tabulation, the logic operators, like
‘and’, ‘or’ and ‘not’ are also defined in fuzzy logic,
and the extensive principles can be applied to derive
definitions of these operators.

Fuzzy logic provides ‘a means of translating natural
language-based expressions of knowledge and
common sense into a precise mathematical
formalism’ (Openshaw and Openshaw, 1997:269). It
also gives computers the ability to think and make
decisions more like human beings (McNeill and
Freiberger, 1994). For geographers, it offers ‘a
refreshingly new perspective on how to go about
building better models of geographical systems by
handling rather than ignoring or artificially
removing the fuzziness within them’ (Openshaw and
Openshaw, 1997:269).

Fuzzy logic control is the application of fuzzy set
theory and fuzzy logic in control systems. The basic
idea behind this approach is to incorporate the
‘experience’ of a human process operator in the
design of the controller. From a set of linguistic
rules which describe the operator’s control strategy a
control algorithm is constructed where the words are
defined as fuzzy sets. The main advantages of this
approach seem to be the possibility of implementing
‘rule of thumb’ experience, intuition and heuristics
and the fact that it does not need a model of the



process (Kickert and Mamdani, 1978). In a fuzzy
logic control system, fuzzy logic is used to convert
heuristic control rules as stated by a human operator
into an automatic control strategy (Mamdani and
Assilian, 1975).

For example, the development of an area can be
controlled by a set of linguistic rules like the
follows:

IF the slope of an area is very high
AND the infrastructure system of the area is

not complete
THEN development in this area should be very

slow

In the development of a fuzzy logic control system,
different methods have been suggested over the last
twenty years. A typical fuzzy logic control system
consists of four modules: a fuzzy rule base, a fuzzy
inference engine, a fuzzification module and a
defuzzification module (Figure 10).

Figure 10: The fuzzy logic control system

In a fuzzy logic control system, both the input and
the output have measured non-fuzzy values. To
design a fuzzy controller, one must identify the main
control parameters and determine a term set using
linguistic variables to convert the measurements of
input into appropriate fuzzy sets to express
measurement uncertainties. This process is called
fuzzification. The fuzzified measurements are used
by the fuzzy inference engine to evaluate the control
rules in the fuzzy rule base. The result of this
evaluation is a fuzzy set representing possible
control actions. The fuzzy set needs to be converted
into a crisp set, which should be considered as the
representation of the fuzzy set. This conversion
process is called defuzzification (Berenji, 1992). The
defuzzified value (or a vector of values) represents
actions taken by the fuzzy controller of the system.

Fuzzy set and fuzzy logic control provide a
linguistic non-numerical, non-mathematical and
non-statistical based approach to modelling complex
systems, and it is a fairly simple approach with few
rules being required to handle considerable
complexity. This approach has found much practical
applicability in industries and engineering systems
(for example, Umbers and King, 1980; Kickert and
Van Nanta Lemka, 1976; Mamdani and Assilian,
1975). It has also been applied in social sciences,
especially in simulating the human decision-making
processes (e.g., Kickert, 1978; Wenstøp, 1976).

Fuzzy logic control in cellular automaton urban
modelling

A cellular automaton is a dynamic system in which
the state of cells of the system is determined by the
state of the cell itself and states of cells of its
neighbourhood at the previous time step based on
certain transition rules. In this system, the rules
controlling the transition of cells from one state to
another can be deterministic, such as rules
implemented in the ‘Game of Life’ (Gardner, 1972).
However, the transition rules in a cellular automaton
can also be non-deterministic, which are more
appropriate when a cellular automaton represents a
human-related system. For example, in an urban
system, although it is understood that topography is
a constraint to urban development, it is not correct to
claim that ‘an area with a slope higher than 20
degrees cannot be developed into an urban area’.
Even though areas with smooth terrain can be first
selected for development, development could occur
in areas with steep terrain under certain
circumstances, such as high demand for land but
short supply of flat land, or the high income with
people preferring to live on higher elevations to
obtain good views. Therefore, the terrain constraint
is not a deterministic factor to urban development
functioning on a ‘yes’ or ‘no’ base.

Urban development is a complex spatial
phenomenon controlled by many factors. The
geographical conditions of the area, socio-economic
status, infrastructure supply, demographic features
and the potential of population growth, planning and
zoning constraints, environmental protection
regulation as well as group and individual behaviour
all play a role in the process of urban development.
However, none of these factors functions in a
deterministic manner. In other words, urban
development is not controlled by Boolean logic.
Instead, the controlling process of these factors is
based on fuzzy logic. For instance, although it is not
appropriate to say that ‘an area with a slope of 20
degrees cannot be developed into an urban area’, it
will be true to say that ‘development is less likely to
happen to steep terrain land’. With the use of a
linguistic variable, the rule becomes fuzzy, and it
functions according to the regulation of fuzzy logic.
Therefore, it is believed that advantages would come
by incorporating fuzzy logic control in a cellular
automaton to simulate the process of urban
development.

4. DEVELOPMENT OF A FUZZY-LOGIC -
CONTROLLED CELLULAR AUTOMATON
MODEL OF URBAN DEVELOPMENT

Before introducing the fuzzy logic controlled
transition rules in a cellular automaton model to
simulate the process of urban development, the
following two assumptions were proposed:

1). The state ‘urban’ is the highest state a cell
can achieve in the urban fuzzy set.
Therefore, no re-development or urban
consolidation process is considered in this
model;



2). Development can only happen from a lower
state to a higher one, i.e., from non-urban to
partly-urban to urban. No anti-urbanization
process is taken into consideration in this
model.

4.1 Logistic curve of urban development

Previous research demonstrates that the process of
urban development follows a logistic curve over
time (Herbert and Thomas, 1997; Jakobson and
Prakash, 1971; Fourastié, 1963). Fourastié (1963)
suggests that the period of industrialization and
urbanization is a transitory stage in the history of
mankind during which societies transform from
primary or agriculture-based stage to tertiary or
service-occupation based stage (Figure 11). The
transition stage is divided into three parts labelled
take-off, expansion and achievement. The process of
tertiary civilization is a logistic curve, progressing
from 10 to 80 percent levels of urbanization in a
society. Although the three-sector theory has its
shortcomings (Courtheaux, 1969), it demonstrates a
general trend of the process of urban development.
This logistic trend of development has been
identified in many places around the world (Figure
12).

Figure 11: Urban development and the progression
from transitional to modern

(Source: Herbert and Thomas, 1997:41,
reproduced with the authors’ and the

publisher’s permission)

Figure 12: Logistic curve of urban development
between 1950 and 2000

Y axis is population in million; X axis is time.
(Source: Herbert and Thomas, 1997:45,

reproduced with the authors’ and the
publisher’s permission)

Assuming that the full process of urban development
in an area (or a cell) takes n years, i.e., if a non-
urban cell starts a process of urban development, this
cell will be fully urbanized after n years of
development. Let 

ijxt  denote the tth year of

development of a cell ijx . The extent of urban

development of the cell in year t can be represented
by a membership grade, which can be denoted
by

urbanSµ ( t
ijx ). With the understanding of the logistic

curve of the process of urban development, the
relationship between 

ijxt  and
urbanSµ ( t

ijx ) can be

represented by Equation 4.1.
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where 0a , 0b  and 0c  are parameters of the logistic
curve; n is the duration of the whole process of
urban development. The shape of the growth curve
usually represents the speed of urban development
over time, which is controlled by three parameters,
i.e., 0a , 0b  and 0c . The speed of urban

development varies from one city to another, and
even from one cell to another with a city. However,
the shape of the growth curve is not very sensitive to



changes made through parameters 0a and 0b ; it is

sensitive to changes made through parameter 0c .

Therefore, 0a , 0b , 0c  and n can be defined and
calibrated according to the speed of urban
development of individual cities.

4.2 Incorporating fuzzy-logic-controlled
transition rules

Generic mode of urban development

According to the principles of cellular automata, the
state of the cell itself and the states of its
neighbouring cells at a previous time step determine
the state of a cell in the urban fuzzy set. If a cell has
a strong propensity for development and it can get
support for such development from its
neighbourhood, then development will occur to that
cell. For instance, if a cell has a membership grade
larger than a certain value at time t in the urban
fuzzy set, which means it has a strong propensity for
development, and the average grade of membership
of its neighbouring cells is larger than the
membership grade of the cell itself, which means
there exists a driving force for development from its
neighbourhood, the cell will undergo further
development following the logistic curve illustrated
in Equation 4.1.

To determine what state a cell will be in after a
certain time period, Equation 4.1 can be rewritten as
Equation 4.2:
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For each cell ijx  in the urban fuzzy set, its

membership grade has been defined through its
population density value in Equation 3.4. Therefore,
the stage (or year as denoted by 

ijxt ) of development

of the cell in the urban development process can be
calculated in Equation 4.2.

With the awareness of the current stage of
development of cells in the urban development
process, the grade of membership of this cell in the
urban fuzzy set at another time t’ can then be
computed through Equation 4.1.

Constrained patterns of development

However, not all cells in the urban system are
developing at the same time or at the same speed.
Variation of the state of cells and factors such as the
geographic conditions of the cell and its
neighbouring cells, socio-economic status, planning
and government polices can have significant impacts
on such development, resulting in variation in the
pattern of urban development in space and over
time. For instance, if a cell has the propensity for
development but it cannot get sufficient support
from its neighbourhood, development could be

slowed down. This slow development can also occur
if the cell sits in a high terrain or a deep slope area.
With the support of transportation networks,
development might be expedited. Cells which are
sited in water bodies, such as sea, lakes or rivers, or
cells which are located in areas reserved for various
purposes cannot be developed. In some areas at
some stage, advantageous conditions for
development could lead to new development in
undeveloped non-urban areas. For instance, with the
construction of a new railway line extending from an
urban to a rural region, areas along the new railway
line could be selected for urban development. Based
on fuzzy logic control, the basic pattern of
development can be modified using a number of
linguistic variables such as ‘quick’, ‘slow’, ‘very
quick’ or ‘very slow’ and so on to achieve different
scenarios of development. Based on the definition of
the generic mode of urban development, the
following four membership functions were proposed
to represent various constrained patterns of
development.

Basic pattern of development
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Quick development
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Slow development

urbanSµ (
't

ijx ) = 














≥

<≤
⋅−+

<

nt

nt
tcba

t

ij

ij

ij

ij

x

x
x

x

'

'
'

00

'

1

0
)'exp(

1

00

(0< 'c <0.5) (4.5)
New development
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No development

urbanSµ (
't

ijx ) =
urbanSµ ( t

ijx ) (4.7)

Through the variation of parameters 'c  in Equations
4.4 and 4.5, more scenarios of urban development
such as ‘Very quick development’, ‘Extremely quick
development’, ‘Very slow development’ and
‘Extremely slow development’ can be implemented
in the model. The linguistic variables used in this
paper are defined as follows:



Quick : 'c = (1 + ¼)× 0c
Very quick : 'c = (1 + ½)× 0c
Extremely quick : 'c = (1 + ¾)× 0c
Slow: 'c = ¾ × 0c
Very slow: 'c = ½ × 0c
Extremely slow: 'c = ¼ × 0c

Figure 13 illustrates the membership trends of seven
different patterns of development in an urban
system, based on a 20-year period for full
development.
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Figure 13: Seven different patterns of
urban development

Fuzzy inference engine

In modelling of urban development based on cellular
automaton principles, each of the patterns of
development described in Equations 4.1 through 4.6
is regarded as a transition. For the development of a
cell in this system, the question of which transition
rule applies at a certain time depends on the
condition of the cell itself and the conditions of cells
in its neighbourhood. These conditions can be either
physical, socio-economic, or institutional, or the
combination of any or all.

Let 1T , 2T , 3T , 4T , 5T , 6T , 7T  and 8T  represent
eight different transitions in the development of a
cellular automaton based urban system. These
transitions are termed as ‘Normal development’
(basic pattern) ( 1T ), ‘Slow development’ ( 2T ),

‘Very slow development’ ( 3T ), ‘Extremely slow

development’ ( 4T ), ‘Quick development’ ( 5T ),

‘Very quick development’ ( 6T ), ‘New development’

( 7T ) and ‘No development’ ( 8T ) respectively. The

basic pattern of development ( 1T ) will be
implemented if a cell has a strong propensity for
development and it can also get sufficient support
for such development from its neighbourhood. No
other constraints such as topographic variations or
transportation networks or planning schemes apply
to the cell. If the state of cells at the neighbourhood
of a cell ijx  is represented by the average grade of

membership of all the neighbouring cells in the
urban fuzzy set, which is denoted by 

urbanSµ (
ijxΩ ),

then the rule under which 1T applies can be
expressed as:

Condition A
urbanSµ ( ijx ) >= 0µ  and

urbanSµ (
ijxΩ ) >

urbanSµ ( ijx ) (4.8)

where 0µ  is a minimum threshold delimiting a cell
with strong propensity for development. For
example, 0µ  can be set to 0.5 for the first instance
and it can be calibrated within the model on the
simulation process.

If a cell has a strong propensity for development but
it cannot get sufficient support for such development
from its neighbourhood, a slow development pattern
( 2T ) applies to that cell. This slow development
pattern also applies if a cell does not have a strong
propensity for development but it can get support for
development from its neighbourhood. Therefore, 2T
applies if

Condition B
urbanSµ ( ijx ) >= 0µ  and

urbanSµ (
ijxΩ ) <

urbanSµ ( ijx ) (4.9)

or Condition C 0<
urbanSµ ( ijx ) < 0µ  and

urbanSµ (
ijxΩ ) >

urbanSµ ( ijx ) (4.10)

Similarly, if a cell has a weak propensity for
development and it cannot get sufficient support for
such development from its neighbourhood, a very
slow development process applies to that cell.
Therefore, 3T  applies if

Condition D 0 <
urbanSµ ( ijx ) <= 0µ  and

urbanSµ (
ijxΩ ) <

urbanSµ ( ijx ) (4.11)

Apart from the above situation, if a cell does not
have the propensity for development and it cannot
obtain support for such development from its
neighbourhood, then no development can occur in
that cell. Therefore, 8T  (No development) applies.
Moreover, a cell may sit in areas where urban
development is strictly constrained either by
physical conditions or by institutional concern. In
this case, no development will occur in that cell
regardless of the state of the cell itself and the states
of its neighbouring cells.
As urban development can be sped up or slowed
down by a number of factors such as topographic
conditions, transportation networks, socio-economic
status as well as planning and human decision-
making behaviour, the above four transitions ( 1T ,

2T , 3T  and 8T ) can be applied under the impact of

these factors. In addition, more transition rules such
as 4T  to 7T  can be applied. For instance, if the
topographic constraint is introduced into the model,
then 2T  applies if

• A cell is located in a high slope area; and
• It has a strong propensity for development;

and



• It can also get sufficient support for
development from its neighbourhood.

Similarly, 3T  applies if

• A cell is located in a high slope area; and
• It has a strong propensity for development,

but it cannot get sufficient support for
development from its neighbourhood; or

• It has a weak  propensity for development, but
it can get sufficient support for development
from its neighbourhood.

4T  applies if

• A cell is located in a high slope area; and
• It has a weak  propensity for development;

and
• It cannot get sufficient support for

development from its neighbourhood.
And 7T  applies if

• An undeveloped cell is sited in a very flat
area; and

• It can get sufficient support for development
from its neighbourhood.

Considering the impact of transportation networks
on urban development, more rules can be
implemented in addition to the rules demonstrated
above in the transition of such a cellular automaton
based urban system. For instance, 1T  applies if

• A cell is in an area with convenient
transportation systems; and,

• It can get sufficient support for development
from its neighbourhood; however

• The propensity for development from the cell
itself is weak .

2T  applies if

• A cell is in an area with convenient
transportation systems; however

• It has a weak  propensity for development;
and

• It cannot get sufficient support for
development from its neighbourhood.

5T  applies if

• A cell is in an area with convenient
transportation systems; and

• It has a strong propensity for development;
and

• It can also get sufficient support for
development from its neighbourhood.

More constraints can be introduced into the model
individually or in combination with one another
through the above procedure. By calibrating the
model against the actual process of urban
development, it is convenient for modellers to
evaluate the impact of each factor on the process of
urban development.

4.3 Implementing the model in a GIS

Cellular automata models can be implemented
within many types of software (Batty, 1997). For
cellular automata models of urban development,
programs have been implemented both inside and

outside a GIS environment. For the former type,
Itami and Clark (1992) and Itami (1988) developed
their models within a raster GIS of Idrisi and MAP
II, and Wu (1998a, 1998b, 1998c) implemented his
model using ARC/INFO’s Arc Macro Language
(AML). These programs took the advantage of the
graphic capabilities and the friendly user interface of
a GIS. Other programs were developed outside a
GIS, although most were loosely coupled with a GIS
for data manipulation and visualisation. This kind of
models can be exemplified by Batty, Xie and Sun
(1999), Batty (1998), Clarke, Hoppen and Gaydos
(1997). As software packages become more open to
one another, and they are incorporating more generic
programming capabilities and graphic functions,
‘dedicated software for developing CA becomes less
important’ (Batty, 1997:272).

Nevertheless, geographical models developed within
a GIS are still preferable in many applications. In
this project, the model is programmed using
ARC/INFO’s AML in a GRID environment. There
are a number of reasons for using such a strong
coupling strategy. One is that data are processed and
stored in the GIS as grid files, and the simulated
output of the model are also stored as grids in the
GIS. No data conversion is necessary between the
GIS and the model, which saves time on data
communication and conversion. This feature is
especially advantageous during the model
calibration process, when simulation results need to
be compared and fitted with data illustrating actual
urban development. Another useful feature of the
model is its spatial visualisation capability. As all
input data and output results are stored as
ARC/INFO grids, these data can easily be visualised
spatially in either the ARC/INFO or ArcView
programs. Calibration of the model and analysis of
the goodness-of-fit of the model’s output with the
actual urban development can be conducted easily
using the GRID tools in ARC/INFO or the spatial
analysis module in ArcView. In addition, by creating
a friendly user interface of the model using the
AML, parameters used in the model can be provided
and controlled by the user, so as the implementation
of different transition rules and different scenarios of
development.

4.4 Experimental scenarios of development

Before the application of the cellular automaton
model to a real city, it was applied to simulate the
process of urban development of a simplified
artificial urban system for the easy identification of
the model’s behaviour. For this purpose, a cellular
automaton based urban system was proposed, and
consisted of 100 by 100 cells. The states of cells in
the urban development process were defined
artificially (Figure 14(a)). With the assumption that
a full process of urban development takes 20 years,
i.e., n = 20 in Equation 4.1, the model first simulates
a scenario of development under neither physical nor
institutional constraints. Development is controlled
only by the state of a cell itself and the states of its



neighbouring cells. In this situation, only cells with a
membership grade larger than 0 have the opportunity
to develop. In other words, development occurs to
cells that have already started their development
process. The higher the grade of the membership,
the quicker the cell is developed. No development
occurs to the undeveloped cells whose membership
grade is 0, as these cells were supposed to have
neither self-propensity for development nor can they
obtain support for development from their
neighbourhood. Hence, the urban area would not
expand to the non-urban area over time. Only four
transition rules were applied to control the process
of this development. These rules are normal
development ( 1T ), slow development ( 2T ), very

slow development ( 3T ) and no development ( 8T ).

Figure 14 (b), (c) and (d) demonstrate the results of
development of this city at the fifth, tenth and the
twenty-fifth years respectively.

Figure 14: Unconstrained urban development
a) initial states of the city; b) urban scenario
after five years; c) urban scenario after ten

years; d) urban scenario after 25 years.
Circular neighbourhood applies, radius = 1.

If the topographic condition of the city varies from
place to place, then this factor needs to be
introduced into the model as a constraint. As
development can be expedited in areas with smooth
terrain and flat slope, and it can be slowed down in
areas with high terrain and steep slope, more rules
can be implemented on the process of the urban
development. These include transitions 4T  and 7T
in addition to the four transitions applied above.
Figure 15 (a) and (b) demonstrate the topographic
condition of the city, which were defined artificially,
and Figure 15 (c) to (f) demonstrate scenarios of
development under these conditions at different
iterations.

Figure 15: Topographic constrained urban
development

a) DEM of the city; b) slope; c) initial states
of the city; d) urban scenario after five years;

e) urban scenario after ten years; f) urban
scenario after 25 years. Circular

neighbourhood applies, radius = 1.

In addition to the topographic constraint, other
factors such as the transportation networks can also
have important impacts on the process of urban
development of this city. Figure 16 demonstrates the
results of development of the city under both the
topographic constraint and the transportation
networks. In this situation, development has been
attracted significantly to areas along the major
transport routes.

Figure 16: Topographic constrained and
transportation supported urban development (See

Figure 14 for notes)

Experimental application of the model to an artificial
city demonstrates that the model constructed based
on the cellular automata principles and incorporating
fuzzy set approaches is capable of generating
realistic scenarios of urban development. Urban
development was controlled by various transition
rules which reflect actual conditions of the city
being modelled. The simple application of rules
demonstrates the validity of the model. It also
indicates that more complicated rules including



urban infrastructure supply, socio-economic status
as well as planning and government policies can be
implemented into the model to evaluate how and to
what extent these factors affect the development of
the city.

5. CONCLUSIONS

This paper developed a model of urban development
based on the principles of cellular automata and
incorporating fuzzy set approaches. Compared with
other urban models based on cellular automata
principles, this model possesses advantageous
features for simulating urban development process.
One of these features is the incorporation of fuzzy
set theory and fuzzy logic in the definition of cell
states and the transition rules. With fuzzy set theory,
the state of a cell is associated with a grade of
membership representing the stage a cell is in its
urban development process. The grade of
membership represents urban development as a
continuous process in space and over time, rather
than as a binary non-urban to urban conversion
process. In addition, the use of fuzzy transitions such
as ‘quick development’, ‘very quick development’,
‘slow development’, ‘very slow development’,
‘extremely slow development’ and various linguistic
variables such as ‘good’, ‘sufficient’, ‘not so
sufficient’ makes the definition of transition rules
more close to human decision-making behaviour.

Advantages for modelling urban development also
come from integrating the model in a geographical
information system. With this integration it is easy
to control the performance of the model, visualise its
output and calibrate it. Experimental application of
the model to an artificial city produced realistic
patterns of development supporting the modelling
approach. A more appropriate and rigorous test of
the model is required to validate its approach and
output. The follow-on from this paper will describe
the results obtained from applying the model to
Sydney, Australia.
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