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Introduction 
The 1992 European Council Habitats Directive (92/43/EEC) requires that the extent 
and condition of a variety of ecologically important habitats be reported on a six 
yearly basis. Remote sensing provides one approach by which these requirements may 
be carried out and could also provide monitoring to assess the impact of management 
practices on protected sites. An essential part of any monitoring program would be to 
determine where land cover change is taking place. However, operational methods of 
carrying out this monitoring using remote sensing are currently not in place. There is 
therefore a need to refine aspects of remote sensing techniques, particularly in the 
field of change detection.  
 
The purpose of this paper is to develop methods of deriving the data for input to a 
change detection model and apply these methods to a sand dune test site near 
Southport, UK.  

Change Detection 
There are a number of approaches for change detection, but the most widely used for 
detecting thematic change is post-classification change analysis. The change detection 
process is subject to a number of errors at each stage of the data gathering and 
classification process and these errors may be subject to complex interactions as the 
change process is modelled. As errors are passed from source to derived data, the 
errors are modified such that the characteristics of the error may be amplified or 
suppressed. Errors within the final change surface could be as a result of errors in the 
sensors, ground data, classifiers and misregistration or due to a lack of spectral 
separability of classes used. Though there are a number of sources of error within 
change detection process, these errors manifest themselves in two major forms: 
thematic and misregistration errors. In order to model the errors, estimates need to be 
made of their magnitude.   
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Error modelling may be carried out at the global, scene level or on a per-pixel basis. 
In this study there is a requirement to know where change is taking place and so 
global methods are not suitable as they will not provide the spatial context of change. 
 
 
Uncertainty 
It is impossible to quantify the actual error on a per-pixel basis, and so the focus of 
any error study must be on the probability of error or the uncertainty inherent in the 
stages involved in the change detection process. Therefore, the uncertainty in each 
stage must be quantified and the propagation of errors through the change detection 
process modelled.  
 

Thematic uncertainty 
Neural network classifiers have been used to generate per-pixel thematic uncertainty 
measures (de Bruin and Gorte, 2000). The most commonly used network in remote 
sensing is the multi layer perceptron (MLP). A variety of measures derived from MLP 
activation levels have been used as indicators of membership on a per-pixel basis 
(Foody, 2000). 
 
The probabilistic neural network (PNN) proposed by Specht (1990) may also be used 
to generate per-pixel thematic uncertainty measures. The PNN is a non-parametric 
Bayesian approach to classification that directly estimates probability density 
functions (PDFs) of the classes used. The generation of PDFs by PNNs allows the 
network outputs to be interpreted directly as posterior probabilities.  
 
Geometric and misregistration uncertainty 
Misregistration of the data sets used in change detection is likely to have a complex, 
spatially dependant function on the errors within the output layer. Even sub pixel 
misregistration errors can result in large change errors (Roy, 2000). Commonly used 
measures of geometric and misregistration error, such as root mean square (RMS) 
error do not consider the spatial function of these errors. One approach to determining 
the spatial function of misregistration would be to estimate misregistration at points 
across a scene and interpolate. This approach would be valid in a relatively static 
habitat or where known areas remain the same. However, in an environment where 
change is taking place, positional errors may be difficult to estimate if references 
points are not known to be static. These errors may be increased in coastal 
environments, where in many cases the greatest change occurs at the seaward side of 
the habitat, the area where there are least reference points. This means that 
extrapolation would be required, resulting in an increased probability of error in the 
estimates of misregistration. 
 
A sensor dependant alternative approach would be to automatically geometrically 
correct the imagery using navigational data from instrumentation onboard the 
platform. If estimates can be made of the uncertainties of the navigational data, a 
geometric model may be generated using navigational uncertainty and a digital 
surface model (DSM) to provide measures of geometric uncertainty. This negates the 
need for fixed reference points on the ground for geocorrection and geometric error 
assessment. In the study site used in this research there are no obvious features that 
may be used for geocorrecting or assessing the accuracy of geocorrection. 
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Experimentation 
1m spatial resolution ITRES Compact Airborne Spectrographic Imager (CASI) 
multispectral data and Optech Light Detection and Ranging (LIDAR) digital surface 
data were gathered over Ainsdale Nature Reserve, Southport, UK in 2001 and 2002. 
For both flights, ground data for classification training and accuracy assessment were 
also collected within 3 weeks.  
 
The LIDAR x,y,z points were resampled to a 2m raster grid. The CASI data were 
geocorrected using ITRES automated geocorrection software using post processed 
differential GPS (dGPS), Applanix POS AV inertial measurement unit (IMU) attitude 
data and the LIDAR DSM. 
  
 
Thematic Uncertainty 
Methods of deriving per-pixel measures of thematic uncertainty were tested using 
MLP and PNN classifiers. The classifications of the Ainsdale sand dune habitat had 
similar overall accuracy for the MLP (Tau = 0.815) and PNN (Tau = 0.818).  
 
The output activation levels were tested for suitability as uncertainty measures, using 
the assumption of a linear relationship between activation and uncertainty. A strong 
and statistically significant relationship was found between the uncertainty measures 
derived and the proportion of correctly classified pixels for the MLP (r2 = 0.989; F-
value = 11416; degrees freedom = 124; p<0.001) and the PNN ((r2 = 0.993; F-value = 
18859; degrees freedom  = 124; p<0.001) (Figure 1) 
 
 
 
Figure 1 Proportion of correct pixels as a function of activation level 
  A MLP       B PNN 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Activation

P
ro

p
o

rt
io

n
 c

la
ss

 c
o

rr
ec

t

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Activation

P
ro

p
o

rt
io

n
 c

la
ss

 c
o

rr
ec

t

 
 
 
Geometric and Misregistration Errors 
Errors within the geometric correction process may be due to either: 
• System error. The GPS, IMU or calibration errors  
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• Orthometric errors. Horizontal positional error due to difference between the DSM 
used in geocorrection and the actual height. 

 
In order to assess geometric uncertainties of the CASI automated geocorrection 
system, data were flown over a test site at Coventry Airport, UK. Easily recognisable 
points on the site were surveyed using dGPS. 
 
Figure 2  Frequency of CASI horizontal errors 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 - 0.5 0.50 - 1.0 1.0 - 1.5 1.5 - 2.0 2.0 - 2.5 2.5 - 3.0 3.0 - 3.5

Horizontal error (m)

F
re

q
u

en
cy

 
 
 
The CASI data were geocorrected, as described above. The DSM used was derived by 
using a nearest neighbour resampling of dGPS surveyed points used to test the 
horizontal accuracy of the CASI data. This provided high precision elevation data at 
the points used to test horizontal accuracy, minimising orthometric errors in the 
geocorrection process. As the orthometric error was minimised, the major error 
component is therefore due to the system. 
 
The GPS and CASI positions of the surveyed points were compared to derive error 
measures. The relationships between positional uncertainty and viewing angle and 
rate of attitude change were tested and found to be not statistically significant. 
Uncertainty functions were derived that described the relationship between a given 
horizontal error and its probability of occurrence (Figure 2).  
 
The results obtained were combined with a simple model of orthometric errors to 
provide an overall measure of geometric uncertainty. The geometric uncertainty 
model was used to provide a model of the misregistration between CASI images. This 
model was tested using an urban area next to the Ainsdale test site. The positions of 
easily identifiable points on the 2001 and 2002 data sets were estimated and the 
misregistration error was compared to that estimated by the model. 
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Conclusions 
Thematic and misregistration uncertainty measures for airborne remote sensing data 
can be generated from neural network classifiers and instrumentation uncertainty. 
These measures have the potential to be used as inputs for change detection allowing 
the spatial context of change to be modelled on a per-pixel basis in a probabilistic 
framework. 
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