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 Abstract 

The wider availability of spatial data and increased computational power have 
created a renaissance in urban land use modeling. While the proliferation of 
urban models has benefited the geographic sciences, their use in and 
implications for public policy decisions may not yet be warranted.  There is still 
much to be understood about these models, especially the calibration of these 
models, from which forecasts are derived.  This paper looks at the calibration  
of a model for a large geographic region at several spatial extents, showing the 
differences between the forecasts based on each extent, and the how these 
differences can proliferate their way into making policy decisions based on 
these forecasts. 

 
1. Introduction 
 
During recent years, models of land use change and urban growth have drawn 
considerable interest. Despite past failures in urban modeling (Lee, 1973; 1994), there 
has been a renaissance of spatial modeling in the last two decades due to increased 
computing power, improved availability of spatial data, and the need for innovative 
planning tools for decision support (Geertman and Stillwell, 2002; Brail and Klosterman, 
2001).  Spatial modeling has become an important tool for city planners, economists, 
ecologists and resource managers oriented towards sustainable development of regions, 
and studies have attempted inventories and comparisons of these models (Agarwal et al., 
2000; EPA 2000).  These new models have shown potential in representing and 
simulating the complexity of dynamic urban processes and can provide an additional 
level of knowledge and understanding of spatial and temporal change. Furthermore, the 
models have been used to anticipate and forecast future changes or trends of 
development, to describe and assess impacts of future development, and to explore the 
potential impacts of different policies (Pettit et al, 2002; Verburg et al, 2002).  Because 
many of these models are being used to provide information from which policy and 
management decisions are made, it is important that modelers have a clear understanding 
of how the geographic extent at which that they are calibrating and modeling influences 
the forecasts that their models produce.  This is directly linked to a larger geographic 
issue in modeling. Can large scale (geographic extent) models accurately forecast local 
growth compared to smaller scale applications, or should state/nation/global modeling be 



done at a local level and then aggregated to create a more realistic view?  
  
The concept of geographic extent and how changing it alters a model's parameter space, 
and subsequently model outputs and forecasts is not something that has been studied 
extensively.  In this work, extent is defined as the geographic boundary of a system.  
Generally speaking, when the extent of a geographic system is changed, so should the 
statistics that describe the system, and the interactions that take place within that system.  
Only in the unique case of an infinite surface of a checkerboard pattern is this not true.  In 
the case of urban models, the effects of geographic extent on model calibration and 
outputs may be overlooked or brushed aside due to two constraints that inhibit this type 
of modeling in general: (1) many times researchers struggle to get the necessary data to 
run the models, at any spatial extent; and (2) as the spatial extent of data gets larger, the 
computational time increases, sometimes in more of an exponential manner than a linear 
one.  These two issues have prohibited urban modelers from sufficiently addressing the 
issue of geographic extent and how it relates to urban model output, but even more 
importantly, how calibration at different extents can impact model forecasting and final 
outputs. 
  
With any model, there is an explicit need to calibrate and parameterize the model to fit 
the dataset.  Recently modelers have increased their focus on the calibration phase of 
modeling to gain a better understanding of how models, in particular cellular automata, 
work (Straatman et al, 2003; Wu, 2002; Silva and Clarke, 2002; Li and Yeh, 2001a; 
Abraham and Hunt, 2000).  The calibration phase of modeling is one, if not the most 
important, stage in modeling because it allows the fitting of model parameters to the 
input data, to be further used in forecasting.  Failure to calibrate a model to the input data 
results in an application that is not robust or justifiable.  While these efforts have focused 
on better calibration and definition of the parameters for these models, none of them have 
focused on how calibration at different resolutions changes the parameter set and the 
model outputs.  For all models, the “best” parameter space is defined as the area or 
volume of parameters that is searched to find the parameter set.  The parameter set is then 
the 'best-fit' set of parameters that describe the behavior of the system within the 
framework of the model.  The parameter space is defined as an area or volume depending 
on the number of individual parameters.  If there are only two parameters, then the 
parameter space in an area; any more than two then it is a n-dimensional volume.  A 
better understanding of how resolution changes a model's parameter set, and hence its 
outputs, is an important area of research, especially when many of these models are used 
in the decision making process.   
  
Should modelers take into account that an urban area may be a transition zone between 
two metropolitan areas or is influenced by a larger region in the calibration process?  And 
how does incorporating the influence of these areas change the parameter space, and 
hence the spatial output of the model?  Inclusion of outside influential areas into local 
urban models is not a new idea (Haake, 1972), but perhaps the study of how their 
inclusion changes the parameter space of current models may be.  Advances in 
computing, especially the advent of parallelization and the cost effective strategy of 
'clusters' have significantly deflated the geocomputational cost of modeling larger spatial 



areas at fine resolutions, so inclusion of possibly influential, but outside, areas is not as 
much of a taxing task as it once was. Capitalizing on these advances, this research 
focuses on  the relationship between spatial extent and parameter space, and how 
calibration of an urban cellular automata model at varied spatial extent can allow for 
forecasts that are more typical of the local-regional interactions taking place. 
  
The SLEUTH urban model is a cellular automaton model that has been widely applied 
(Yang and Lo, 2003; Esnard and Yang, 2002) and has shown its robust capabilities for 
simulation and forecasting of landscape changes (Clarke et al, 1997). The model makes 
use of several different data layers for parameterisation, e.g. multi-temporal land use and 
urban extent data, transportation network routes and digital elevation model data.  
Application of the model necessitates a complex calibration process to train the model for 
the spatial and temporal urban growth (Silva and Clarke, 2002).  This paper documents 
work done on the role that geographic extent plays in the calibration of urban models by 
working with SLEUTH.  A large geographic area was calibrated and modeled at three 
different geographic extents: global (extent of the entire system), regional, and county.  
The derived parameters are then used to forecast urban growth from 2000 to 2040. The 
results from the model forecasts were then compared to determine the extent that 
calibration at different geographic extents had on model forecasts.  This analysis is then 
used to examine some general considerations about the geographic extent over which 
urban models are calibrated and used, and the implications that this has for using these 
models to evaluate policies and scenarios.   
 
 
2. Calibrating Urban Automata 
 
Modeling geographic systems using cellular automata (CA) models is a recent advance 
relative to the history of the geographic sciences (Silva and Clarke, 2002).  Tobler (1979) 
was the first to describe these models in geography, briefly describing five land use 
models that were based on an array of regular sized cells, where the land use at location i, 
j was dependent on the land use at other locations.  Applying this method of modeling to 
urban systems for planning applications was recognized early (Couclelis, 1985), and 
application of these models has proliferated in the last decade (de Almeida, 2003; Li and 
Yeh, 2001b; Ward et al, 2000), including the development of SLEUTH.  While the 
models themselves have proliferated, work on the calibration phase has lagged, and the 
need for stronger and more robust methods for calibrating and validating CA models has 
been noted (Torrens and O'Sullivan, 2001). 
  
Model calibration has become an increasingly important consideration in the  
development phase of modeling (Batty & Xie, 1994; Landis & Zhang, 1998).  Yet the 
high flexibility in rule definition used in cellular automata modeling, and application of 
these rules to manipulate cell states in a gridded world, makes parameter estimation a 
more difficult process (Wu, 2002).  In the case of CA models where the transition rules 
consist of equations for calculating future state variables, they generally consist of several 
linked equations for each land use, and these are complexly linked, so calibrating a model 
may require the fitting of tens, if not hundreds of parameters (Straatman et al, In Press).  



The general difficulty in finding the 'golden set' of  parameter values of cellular automata 
is due to the complexity of urban development (Batty et al, 1999).  Methods for 
calibration such as the use of off-the-shelf neural network packages have been suggested 
by some (Li and Yeh, 2001a), but some have argued that these sort of methods produce a 
'trained' model and not one that has intrinsic meaning in terms of known geographic 
principles (Straatman et al, In Press).  Due to these difficulties and the parameters of CA 
models being dependent on the transition rules for the model, there has been little 
research on the parameter space or sets of urban cellular automata and how they are 
related to the geographic extent of calibration, although the work that has been done on 
calibration is a good starting point for looking at how the parameter space can be 
approached.  This is in contrast to work on CA in computer science, where rules and 
parameters impacts on behavior have been studied exhaustively. 
 
2.1 SLEUTH Calibration 
 
Calibration of SLEUTH produces a set of five parameters (coefficients) which describe 
an individual growth characteristic and that when combined with other characteristics, 
can describe several different growth processes.  For this model, the transition rules 
between time periods are uniform across space, and are applied in a nested set of loops.  
The outermost of the loops executes each growth period, while an inner loop executes 
growth rules for a single year.  Transition rules and initial conditions of urban areas and 
land use at the start time are integral to the model because of how the calibration process 
adapts the model to the local environment. Clarke and Gaydos (1998) describe the initial 
condition set as the ‘seed’ layer, from which growth and change occur one cell at a time, 
each cell acting independently of the others, until patterns emerge during growth and the 
‘organism’ learns more about its environment. The transition rules that are implemented 
involve taking a cell at random and investigating the spatial properties of that cell’s 
neighborhood, and then urbanizing the cell, depending on probabilities influenced by 
other local characteristics (Clarke et al, 1997). Five coefficients (with values 0 to 100) 
control the behavior of the system, and are predetermined by the user at the onset of 
every model run (Clarke et al, 1997; Clarke and Gaydos, 1998; Candau, 2000).  These 
parameters are: 

1.Diffusion – Determines the overall dispersiveness nature of the outward distribution. 
2.Breed Coefficient – The likelihood that a newly generated detached settlement will 

start on its own growth cycle. 
3.Spread Coefficient – Controls how much contagion diffusion radiates from existing 

settlements. 
4.Slope Resistance Factor – Influences the likelihood of development on steep slopes. 
5.Road Gravity Factor – An attraction factor that draws new settlements towards and 

along roads. 
These parameters drive the four transition rules which simulate spontaneous (of suitable 
slope and distance from existing centers), diffusive (new growth centers), organic (infill 
and edge growth), and road influenced (a function of road gravity and density) growth. 
  
By running the model in calibration mode, a set of control parameters is refined in the 
sequential 'brute-force' calibration phases: coarse, fine and final calibrations (Silva and 
Clarke, 2002), although other methods of calibration, including the use of genetic 



algorithms have been suggested and tested (Goldstein, 2003).  In the coarse calibration, 
the input control data is resampled to one quarter of the original size (i.e. 100m is 
resampled to 400m), and then a Monte Carlo simulation of a broad range of parameters 
are tested for their fit in describing the input data.  The results of the calibration run are 
then analyzed to narrow the range of tested parameters, based on metrics that describe 
spatial characteristics of the calibration runs against the input control data, specifically 
using the Lee-Sallee metric because of it's 'spatial matching' of the control data, although 
there has been some suggestion that other metrics can be used (Jantz et al, 2002).  This 
metric is a shape index that measures the spatial fit between the model's growth and the 
known urban extent for the calibration control years.  Upon narrowing the range of 
parameters based on the metrics, the original input data are resampled again, but to one 
half of the original size (i.e. 100m is resampled to 200m), and simulated over the 
narrowed range of parameters.  Again, the results are analyzed, and the range of 
parameters narrowed.  This final set of parameters is simulated with the full resolution 
original data.  The resultant parameters are then used to forecast urban growth.   
 
2.2 Study Area and Data 
  
Using the San Joaquin Valley (CA) as a study area (Figure 1), input data for modeling 
urban growth using SLEUTH were compiled at 100m resolution (Table 1). Data sources 
for historical urban extent are listed in Table 1. Urban extent data for San Joaquin Valley 
for the years 1940, 1954, and 1962 were digitized from historical USGS 1:250,000 maps 
and based on air photo interpretation and supplemental ground survey information. Data 
from 1974 and later were captured directly from space-based remotely sensed imagery. 
The urban extent data for 1974 and 1996 were based on Landsat MSS and Landsat TM 
mosaics compiled by the USGS Moffet Field, California office 
(http://ceres.ca.gov/calsip/cv/). Additional data for 1984, 1992, 1996, and 2000 were 
obtained from the California Farmland Mapping and Monitoring Program (CA-FMMP) 
that utilized aerial photography as a base mapping source 
(http://www.consrv.ca.gov/DLRP/fmmp/). The 1996 CA-FMMP data were merged with 
the USGS data to create a composite image of growth. Urban extent through time was 
treated as a cumulative phenomenon so that each time period built on the previous one, 
and urban extent was not allowed to disappear once it was established. All data 
processing was accomplished within a GIS environment.  

 



Figure 1.  Location of California, population centers greater than 50,000 people, and the 
location of the San Joaquin Valley. 



 

Data Layer Source Description Resolution 
Topography/Slope USGS 30m DEM 30m 
Land Use CA-DWR Not used in this modeling  
Exclusion CaSIL Vector coverage of Federal and State owned 

land 
N/A 

Urban Extent USGS Urban extent for 1940, 1954, 1962, 1974, 
1996  

100m 

 CA-FMMP Vector coverage of developed land from 
1984 to present in 2 year intervals 

N/A 

Transportation CalTrans Vector coverage of functionally classified 
roads from 1940 in 5 year increments 

N/A 

Table 1.   Sources, description, and resolution of data used in SLEUTH modeling of the 
San Joaquin Valley (CA). 
 
The San Joaquin Valley, while one large geographic and cultural area, is comprised of 
eight independent counties (Figure 2): San Joaquin, Stanislaus, Merced, Madera, Fresno, 
Kings, Tulare, and Kern.  Additionally, these counties can be grouped into three distinct 
regions, based primarily on their economy (Figure 2).  The Bay Area Region (San 
Joaquin, Stanislaus, Merced) is heavily influenced by the San Francisco Metropolitan 
Area economy and commuting patterns.  Agriculture creates the economic base of 
Madera, Kern, Kings, and Tulare counties, uniting them as the Agricultural Heartland; 
and oil dominates Kern County which doubles as a county and region due to its unique 
natural resource and commuter patterns with the Los Angeles Metropolitan Area. 

 
Figure 2.  The eight independent counties in the San Joaquin Valley (left) and the three 
economic regions (right). 
 
Input data for SLEUTH were calibrated for the San Joaquin Valley as a whole, each of 
the three regions, and each of the eight counties.  The resulting parameter spaces were 
then used to forecast urban growth from 2000 to 2040, and using both tabular and 
graphical outputs, the results of the forecast were compared.  Growth for San Joaquin, 



Madera, and Kern counties was then forecast using the global (San Joaquin Valley), 
regional, and county parameter sets to determine how that area grew specific to the 
others.  
 
3. Calibration and Forecasting Results 
 
Calibration of the San Joaquin Valley and subsequent datasets resulted in a parameter set 
describing the growth of each area that was different for all areas included in this study 
(Table 2). 
 

  Coefficients 
Area Extent Diffusion Breed Spread Slope Road 

San Joaquin County 2 2 54 1 3 
Stanislaus County 2 7 54 29 100 

Merced County 2 2 41 35 15 
Madera County 2 2 25 83 21 
Fresno County 2 5 58 41 52 
Kings County 2 2 45 1 2 
Tulare County 2 2 32 41 2 
Kern County/Region 2 2 58 46 31 

Bay Influenced Region 2 4 47 30 3 
Agricultural 
Heartland 

Region 
2 2 45 36 41 

San Joaquin 
Valley Global 2 2 83 10 4 

Table 2.  Resultant growth coefficients for the 11 geographic extents calibrated using the 
SLEUTH model 
 
San Joaquin, Madera, and Kern counties were forecast using the global parameters along 
with their respective region and county parameters.  Total urban area and new urban 
growth over time under each of the parameter sets were plotted for these three areas 
(Figure 3) 



Figure 3.  Total urban area and new urban area for each year for San Joaquin, Madera, 
and Kern counties, projected using the global parameters along with their regional and 
county parameter sets. 
 
 
 
 



Total urban area from 2000-2040 in San Joaquin County was greater when the local 
county parameter set was used in forecasting compared to that of the Bay Influenced 
region and the global San Joaquin Valley (Figure 4).  This is further supported by the 
total hectares of new urban growth for the county parameters set than the region and 
valley parameters (Figure 3), yet the difference between the three was slight over the 
forty year forecast.  Total urban area is predicted to cover 125,000 hectares under the 
county parameter set, 127,000 and 135,000 hectares under the region and valley 
parameters.   
 

 
Figure 4.  Predicted urban growth for San Joaquin County using the county (left), region 
(middle), and valley (right) parameter sets.   

 
Growth trends in Madera County under the three parameter set forecasts were opposite of 
San Joaquin County.  Using the global San Joaquin Valley parameters to forecast future 
growth produced a county that grew three times faster than when the local county 
parameters were used, and twice as fast when the regional Agricultural Heartland 
parameters were used in forecasting (Figure 5).  Total urban area under the county 
parameters was 36,000 hectares, opposed to the 60,000 and 90,000 predicted using the 
region and valley parameters.   



 

 
Figure 5. Predicted urban growth for Madera County using the county (left), region 
(middle), and valley (center) parameter sets.   
 
Kern County, a unique area that itself is a region, had growth curves that were lower than 
those of the global San Joaquin Valley (Figure 6).  The number of hectares of urban 
growth is predicted to be 305,000 for the county and region parameters, and 395,000 
under the valley parameters.  This difference between the total urban area forecast by the 
different parameter sets was not as great as was found for Madera County, but larger than 
the minute differences found in San Joaquin County. 
 

 
Figure 6. Predicted urban growth for Kern County using the county and region (left), and 
valley (right) parameter sets.   
 
Using a GIS to overlay the model outputs, geo-algebra was done to determine the total 
area that was both unique and common between all parameter set forecasts for the year 
2040 for each of the three areas (Table 3).  In concurrence with the total urban area 
curves in figure 3, the urban area common between growth forecasts using the county and 
regional parameters, compared to the valley parameters, were most similar in San Joaquin 
County.  The total urban area in common between the county and valley parameters was 
89%, while there was an 94% similarity between the region and valley parameter 
forecasts.  The contrast between the three forecast for Madera County was further 
demonstrated, and their was only a 36% spatial agreement between the county and valley 
forecasts, and 63% between the region and valley.  Urban growth forecast for Kern 
County had a 79% spatial agreement between the county/region and valley forecasts. 



 
  Between Valley and County Parameter Forecasts in 2040 Between Valley and County Parameter Forecasts in 2040 

  County Only Both Valley Only County Only Both Valley Only 

County Area  % of Urban Area  % of Urban Area  % of Urban 

Total urban 
area 

between 
both  Area  % of Urban Area  % of Urban Area  % of Urban 

Total urban 
area 

between 
both  

San Joaquin 15685 10.53 132988 89.26 311 0.21 148984 6479 4.64 130892 93.64 2407 1.72 139778 

Madera 52 0.05 37113 36.18 65406 63.77 102571 76 0.07 64882 63.24 37637 36.69 102595 

Kern 1167 0.30 304858 78.56 82041 21.14 388066               

Table 3.  Spatial agreement between urban growth forecast under the county and valley 
parameters (left side) and between region and valley (right side).  Urban area is measured 
in hectares. 
 
4. Discussion 
 
Taking a hierarchical approach to modeling urban growth in three counties, each part of a 
different region in one large geographic area, resulted in a different parameter set for 
modeling at each level within the hierarchy.  While the differences in the parameter set 
were small between the diffusion and breed parameters, the differences in the spread, 
slope and road gravity parameters were greatest, and probably had the largest impact on 
the differences in urban growth forecast under the different parameter sets.  The total 
urban area forecast in San Joaquin County appeared to be similar under all three 
parameter sets, while Madera County growth differed by two or three times the amount 
forecast using the local county parameters.  County and region parameters for Kern 
County produced urban forecasts that differed by less than 20%, which was more than 
San Joaquin County, but much less than Madera County. 
  
The differences in total urban area forecast using the different parameter sets was further 
illustrated by the spatial agreement between the forecast of the county and region 
parameters against the valley (Table 3).  Spatial agreement is defined as an area that 
forecast to be urban under the forecasts of each parameter set.  San Joaquin County had 
the highest percent agreement between the county and valley parameters (89), and the 
region and valley parameters (94).  The large difference in growth under the county and 
valley parameters for Madera County showed in the low 36% agreement between the 
county and valley parameters, and the 63% between the region and valley.  Kern County, 
the county that was itself a region, had a 79% agreement.  Both Kern and Madera 
counties, were areas where growth under the valley parameter set produced more urban 
area in 2040, had a large portion of urban growth that only occurred with the valley 
parameters. None of the parameter sets used in forecasting growth produced a significant 
portion of urban growth under the county and region parameters that was not captured by 
the valley parameters. 
 
5. Conclusions 
 
Calibration and forecasting of a hierarchical system has provided insight into whether 
large scale (geographic extent) models can accurately forecast local growth compared to 
smaller scale applications.  Using the San Joaquin Valley (CA) as a study area for this 



investigation provided examples that demonstrated that regional and global calibration 
and forecasting of models can provide similar outputs (up to 94%)  as local scale 
application.  But there are also cases, such as Madera County, where large scale (San 
Joaquin Valley and Agricultural Heartland scale) modeling was grossly different from the 
local modeling effort.  The question is then, how to distinguish when it is appropriate to 
and when not to use global and regional modeling to look at local spatial phenomena, 
because it is the local scale at which most policy and land use decisions are made?  This 
question is most likely dependent on the model being used and its parameters, since they 
are what determine the model output. One noticeable feature that may play a role in most 
models is topography.  In SLEUTH this is addressed by the ‘slope resistance’ parameter, 
but it is undoubtedly used, differently in many other models.  Focusing on Madera 
County, the local parameterization of the model showed a slope resistance of 83 as 
opposed to 36 and 10 by the region and valley parameters.  These lower slope resistance 
parameters allowed growth to occur where it would not normally have under conditions 
characterized by local parameters.  This is different from the parameters from San 
Joaquin and its respective region, where local slope resistance was 1, regional was 30, 
and the valley parameter was 10; not as strikingly different as in the case of Madera 
County.  Taking this into account, a general rule for determining whether a large scale 
application can be useful for looking at a local area might be that if the topography is 
uniform across the entire geographic area, then the model is more likely to accurately 
capture local growth patterns at a larger scale.  Under this line of thought, it would be 
possible to model many of the states and geographic regions in the United States, and 
look at county/metropolitan growth patterns, as well as countries like the Netherlands.  
But this will most likely not be the case, especially when the modeling is being done at 
the national, continental, and global scale.  For these size applications it will most likely 
be necessary to model at a smaller state or region level, and then aggregate the results, 
producing a composite output that is more reflective of local behavior and growth.   
 
The issue of whether large scale modeling efforts can accurately forecast local growth 
compared to smaller scale applications is inevitably also tied to resolution and how 
changes in resolution change the parameter space and model forecasts.  Although this 
issue has not been directly address in this paper, the link between resolution and 
geographic extent is one that should not be ignored.  Coarser resolution modeling will 
undoubtedly dilute model outputs at the local level, but may capture regional growth 
better.  The converse may also be true, but these are areas of research than need 
exploration. 
  
Modelers should continue to work to find the proper geographic extent to model local 
urban growth, while still allowing the inclusion of influences from surrounding urban 
areas.  While the role of geographic extent issues within the calibration and forecasting 
routine might appear to be a too finely detailed area to warrant extensive research efforts, 
this paper has demonstrated that changes in geographic extent can create significantly 
different model outputs, and in some cases, gross differences between results using large 
and small scale calibration. Future efforts should continue to research this area using 
current working models, building on the knowledge gained to improve them, or create 
new ones to better forecast the future. Only once models, their behavior, and their proper 



use are fully understood with honesty, will they be able to be used in a understandable 
and believable manner for application to the planning and decision making process. 
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