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Abstract 
Raw laser scanning data are captured and supplied as 3D points. 
These point data require an appropriate interpolation function to be 
applied to them in order to represent a continuous height surface. 
Many software packages require that points be interpolated onto a 
regular grid, in order that the resultant surfaces can be displayed as a 
Digital Surface Model (DSM). Such interpolation procedures 
introduce error across the surface, and these errors will be 
accommodated by any subsequent analysis on the DSM, such as 
image segmentation or feature extraction. Whilst it is generally 
understood that interpolation  introduces error, there is a paucity of 
information regarding the characteristics of the errors created using 
different methodologies. Out limited understanding of the 
magnitudes and the spatial structure of errors creates uncertainty for 
users of derived products, such as the Digital Elevation Model 
(DEM), normalised Digital Surface Models (nDSM), and also 
uncertainty in processes such as object reconstruction, and viewshed 
modelling. For object reconstruction and feature extraction in 
particular, an understanding of the magnitude, pattern and 
characteristics of the errors introduced by different interpolation 
methods is vital.  
 
This paper presents the results of a sensitivity analysis of the effects 
of varying the resolution of resampled locations upon the magnitude 
of errors. Three grid sizes are investigated, and the magnitudes and 
spatial pattern of errors within each are identified. Forty five Digital 
Surface Models (DSMs) were created using five interpolation 
algorithms and 3 different grid spacings. The errors in each are 
quantified, and the results presented here. Conclusions regarding 
optimal grid spacings for different applications are proposed. 
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1 Introduction 
 
1.1 Laser Scanning 
Laser scanning is an active remote sensing technique, in which pulses of laser light 
are directed towards the ground. The time taken for these pulses to return to the sensor 
is measured and processed in order to determine the distance between sensor and the 
object or surface. These data are combined with information about the known sensor 
position (using GPS and INS), atmospheric conditions, hardware characteristics and 
other relevant parameters, to generate an XYZ coordinate triplet for ground points. 
During data capture millions of irregularly spaced points are captured, and these can 
be interpolated to create a continuous Digital Surface Model (DSM).  
 
Today, laserscanner data and the DSMs derived from them, are used in an 
increasingly broad range of applications, including urban landscape analysis. Here, 
accurate DSMs are required for modelling telecommunications, urban microclimates, 
flooding, and wireless communications. For many of these applications not only must 
the surface be modelled, but also the above ground features, such as buildings and 
vegetation, need to be accurately reconstructed in 3 dimensions. This requires that 
such objects be identified and then extracted from the DSM. Laser scanning has 
become the data source of choice for feature extraction in recent years, principally 
because of the accuracy characteristics of both the height and the range 
measurements. However, the accuracy of the 3-D reconstructions of objects extracted 
from the DSM is a function not only of  the accuracy of the raw data, but also of the 
interpolated DSMs from which they are extracted.  
 
In the process of feature extraction, objects are extracted from the dataset, which may 
be either an unconnected point cloud, a connected triangular irregular network (TIN) 
of original data points, or a grid in which the raw irregular data points have been 
interpolated onto a regular grid. Object extraction from the point clouds and TINs 
may entail both a complex methodology (for example, Roggero, 2002; Maas and 
Vosselman, 1999; Maas 1999; Vosselman, 2000) and intensive data processing. 
However, as the TIN interpolation retains the raw values at sample locations,  it is 
generally considered that it introduces substantially less error into the surface model 
than the grided approach, and that this retention of accuracy justifies the greater 
complexity and processing required for feature extraction using this approach. 
However, this irregular TIN format is unsuitable for many applications such 
measurement of planimetric and vertical shifts between overlapping strips of laser 
data (Behan, 2000), and more commonly, the creation of Digital Surface Models 
(DSMs) for analysis and visualisation of height data in many commercial software 
packages. Extraction from the grid is comparatively straightforward compared to 
similar operations using a TIN or point cloud. While the known disadvantage of 
extraction from the grid is that the interpolation process introduces error into the 
surface model, the nature and magnitude of the errors that are introduced has not 
hitherto been the subject of intensive research. Thus, the relative merits of extraction 
from point clouds, TINs or grid remains unknown.  
 
There are a number of different ways in which irregularly spaced points may be 
interpolated onto grids. This paper investigates the effects of using different 
interpolation methods at differing resolutions upon such errors. 
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1.2 Spatial Interpolation 
Spatial interpolation may be defined as the procedure of estimating the value of a field 
variable at unsampled sites within the area covered by sample locations (Zhang and 
Goodchild, 2002). The basic assumption underlying any interpolation procedure is 
that points that are close in space are more likely to be similar than points further 
apart. All interpolation algorithms therefore aim to estimate values at unsampled 
locations and, in so doing, may change the values of the observed sample points in 
order to create a plausible continuous representation of the field.  
 
Interpolation, or resampling as it is often termed, has two components; the 
interpolation  method and the resampled locations – which refers to the pixel size or 
the grid intervals chosen for resampling onto a regular grid. 
 
1.2.1 The Interpolation Method 
There are two principal methodological approaches for interpolation - deterministic 
and geostatistical interpolation – and both are explored in this investigation.  
Deterministic interpolators use mathematical functions to drive the interpolation 
process, whilst geostatistical approaches use both mathematical and statistical 
functions for the interpolation.  
 
There are different types of deterministic interpolation, firstly there are those which 
interpolate on the basis of similarities between neighbouring points - Inverse Distance 
Weighting is a widely used example (Longley et al, 2001: 106-8). In this method a 
small moving window is used to identify a set number of points. Such interpolation is 
used to provide a locally weighted average. The second type of deterministic 
interpolators is defined by the degree of smoothing in the surfacing.  Here all the 
points in a subset are used to derive a polynomial equation which is then used to 
predict the values at unsampled locations, and the interpolator is said to be global. 
These latter methods are also known as fitted function techniques. In summary, 
weighted average methods emphasise local detail, whereas fitted functions emphasise 
global behaviour. Watson (1992) notes that fitted functions have a tendency to 
overshoot in situations where a tighter, sharper curve established by weighted 
averages would suggest more conservative changes in relief. 
 
Geostatistical methods are founded on statistical concepts, which represent the 
arithmetical relationships, or spatial autocorrelation, between raw data. In addition to 
the surface prediction, geostatistical methods provide a measure of the accuracy of the 
prediction (in the form of a variance function). Geostatistical methods, known as 
Kriging, are more complex than the deterministic approach as they require an 
understanding of the principles of statistical spatial autocorrelation. However, this 
complexity is justified for interpolation where the variation of an attribute is very 
irregular, and the density of observations is such that the simple methods of 
interpolation may yield unsatisfactory results (Burrough and McDonnell, 1998). 
Kriging is an interpolation technique which models spatial variation across a surface 
by looking at general trends/patterns and also by modelling the residuals from this (ie. 
the fluctuations which are not explained by the general trend). In this way Kriging is 
more robust than other methods, which can tend to oversimplify the spatial pattern of 
variables. Because of this it is often claimed that Kriging provides the most accurate 
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predictions of all interpolation procedures (Armstrong, 1998). This paper aims to 
quantify any increases in accuracy offered by Kriging, and to assess whether the 
higher costs incurred by Kriging interpolation for urban surfaces are justified, or 
whether a simpler deterministic approach offers a viable alternative. 
 
A variety of interpolators was chosen for investigation in this study, including both 
deterministic and geostatistical methods. Only local deterministic interpolators were 
chosen as it was considered that the global approach would be inadequate for 
modelling the discontinuities in the urban environment. The methods chosen were 
those most commonly used, namely: nearest neighbour, bilinear, bicubic, biharmonic 
splining, and Ordinary Kriging (OK). Each of these interpolation methods produces 
slightly different height values across the surface. Such are the magnitudes of errors 
involved in the interpolation that Watson (1992) noted that some surface 
representations may have at best a tenuous link with the raw data values used to create 
them. This paper investigates the variations in such error in the resultant surfaces 
derived from different interpolation methods at different grid spacings.  
 
1.2.2 The Grid Spacing 
The size of the grid spacing has a strong influence on the errors introduced during 
interpolation. It has been suggested previously (Behan, 2000) that the optimal spacing 
should be as close as possible to the original point spacing – ideally this means that 
each pixel in the raster should contain one and only one raw data point. More points 
in each cell will promote information loss – as there can be only one value per cell. 
Similarly, if the pixel size is too small and there are a large number of pixels which 
contain no laser points, then the redundancy increases, as do storage requirements. 
This is an important consideration for many users of applications in which analysis is 
conducted over a large geographical extent. 
 
2 Previous Literature 
Whilst the effect of different interpolation methods on the form of the surface has 
been investigated in the past (eg. Zinger et al, 2002; Morgan and Habib, 2002; Lloyd 
and Atkinson, 2002; Smith et al, 2003) there has been little research into the effect of 
changing grid size in the interpolation stage save for that of Behan (2000). Behan 
(2000) quantified error within models produced from different interpolation 
algorithms. It was  found that the most accurate surfaces were created using grids 
which had a similar spacing to the original points. Behan’s (2000) study looked at 
global or average error differences between two interpolation methods. This paper 
aims to extend Behan’s (2000) work, by comparing five interpolation methods (both 
deterministic and geostatistical), and investigating the magnitudes of error created by 
each method at three different grid spacings. 
 
Rees (2000) investigated the interpolation of gridded DEMs to higher resolutions – 
whilst this study did not look at the interpolation of irregularly spaced data onto a 
regular grid (the subject of this paper) many of Rees’ (2000) conclusions are 
nevertheless relevant. Rees (2000) concluded that simple bilinear and bicubic 
interpolations are adequate for most elevation model requirements in non-urban areas, 
and whilst he acknowledged a slight improvement in accuracy offered by Kriging he 
suggested that these improvements were outweighed by the much higher 
computational demand imposed by the geostatistical approach. This hypothesis will 
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be tested with reference to the interpolation of points over urban surfaces within this 
investigation. 
 
Kidner (2003) compared a variety of polynomial equations (up to 36 term) to 
establish the most accurate deterministic algorithm for interpolation of regular grid 
data onto higher resolution grids. He reported that in all cases the higher order (up to 
biquintic) deterministic interpolation techniques produced the most accurate surfaces. 
This conclusion is not surprising given that higher order interpolation techniques will, 
by definition, attempt to model the surface by reducing the amount of curvature 
permitted within the reconstruction. In other words, the higher the order of the 
polynomial the smoother the surface and the less overall error across the surface. 
However, Kidner (2003) did not compare the success of the algorithms across 
different terrain, and it remains likely that for areas with frequent discontinuities (such 
as urban surfaces) there will be little difference in the magnitudes of the errors for any 
deterministic polynomial interpolator. The basis for this hypothesis is that higher 
order polynomials will attempt to model the discontinuous surface with more 
complexity than occurs in reality and that this will potentially introduce error of a 
similar magnitude to that introduced by the much simpler classical interpolation 
methods such as the bilinear. This hypothesis is investigated in this paper. 
 
3 Methodology 
Two adjacent tiles of laser scanner data covering Southampton city centre were 
provided by the Environment Agency for England and Wales. The data were captured 
from an airborne sensor, at a point density of ~2m. The complete raw data-set 
contained some 600,000 points, over an area of approximately 6km2. To speed up 
computation and analysis a small areal subset of this dataset was used for this 
investigation. The subset was chosen to represent the typical surfaces in the urban 
environment, incorporating buildings, an area of bare earth and some vegetation. The 
subset contained some 1315 points. The original data and the location of the subset 
are shown in Figure 1. 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
Figure 1(a) The extent of the laser scanning data – raw data supplied by the 
Environment Agency, Figure 1(b) the subset (88 by 52m), Figure 1(c) Orthorectified 
aerial photograph of the subset, reproduced with kind permission of Ordnance Survey 
CC©. All rights reserved.  
 

1 (b)

1 (a) 1 (c) 
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The church, on the left, and the flat roofed industrial building on the right are visible. 
The two main clusters of vegetation can also be seen lying between the two buildings. 
 
The 1315 points within the subset were first interpolated onto a regular 1m grid using 
each of the five chosen methods in turn. Interpolation using the deterministic methods 
(bilinear, bicubic, biharmonic splining and nearest neighbour) was conducted in 
MatLab (The MathWorks). The Kriging was performed external to MatLab. A 
number of authors advocate the use of specialised geostatistical software for Kriging. 
Burrough and McDonnell (1998), for example, consider that it is more satisfactory to 
export the data to a specialised geostatistical package. The Kriging for this 
investigation was performed in GSTAT, and GSLIB. These packages have both been 
successfully used in previous geostatistical research (Lloyd and Atkinson, 2002). The 
first stage of Kriging requires a preliminary analysis of the raw data to determine 
which type of Kriging should be employed. The histogram (Figure2(a)) shows the 
distribution of the height values used in this investigation. The distribution was 
strongly negatively skewed. In such cases, it is advised (Burrough and McDonnell, 
1998) that either the skew is ignored and ordinary Kriging is conducted as it is 
relatively stable, or that the raw data should be transformed into a log-normal 
distribution. Log-normal Kriging entails interpolation of log-normally distributed 
(rather than Normally distributed) data Deutsch and Journal (1992). The predictions 
resulting from the Kriging must then be back-transformed. The extreme sensitivity of 
the errors for back transformation have been previously noted (Deutsch and Journel, 
1992), this renders lognormal Kriging very difficult to use in practice.  
 
The study data for this investigation were logged in accordance with the above 
methodology. However this return a multi-modal rather than a Normal distribution 
(figure 2(b). Given this and the known problems associated with this technique it was 
decided that the log-normal Kriging (with a non-normal transformed data set) would 
be unlikely to yield  more accurate results that ordinary Kriging. Thus, the decision 
was taken to conduct the investigation based on ordinary Kriging. 
 

 
 
Figure 2(a) Frequency distribution of the raw data – note the strong negative skewing 
Figure 2(b) Frequency distribution of the logged data – note the bimodal distribution 
 
 
Kriging also requires the construction of a semi-variogram – the structure of which 
provides details which feed into the Kriging itself. The raw variograms were plotted 
and the closest model fitted to them, in all cases a spherical model was chosen, and 
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the line fitted using either unweighted ordinary least squares (OLS), or weighted least 
squares (WLS). The results from the fitting of the experimental variogram models 
were fed into a parameter file to be used in the Kriging of the surface.  
 
In total forty five DSMs were created using different interpolation algorithms and 
varying grid spacings. Each surface was created using 1m, 2m, and 4m grids. The 
surfaces were created using a random selection of 95% of the raw data, the remaining 
5% of values were retained. The success of the surface reconstruction was then 
assessed by using the interpolated surfaces to predict the values at the retained 
locations. This technique is known as jack-knifing (Deutsch and Journel, 1998 ) and 
has been used as a test of surface accuracy in a number of papers (Lloyd and 
Atkinson, 2002). The jack-knifing technique was used to calculate the error in the 
surfaces, statistics were calculated for these error measurements in order to assess the 
relative accuracy of the different methods at different grid resolutions. Here it is 
important to distinguish between error and accuracy. Atkinson and Foody (2002) state 
that error relates to a single value and is data-based, whereas accuracy relates to the 
average of data values and is model-based. For the purposes of this investigation the 
error within each of the surfaces was calculated for each point in the jack-knifing set. 
The error (e) at each point was considered to be the difference between the raw data 
point (Z(x)) and the interpolated value (Zi(x)) for that location (see eq.1 below). 
 
     e (x) = Z(x) – Zi(x)    (1) 
 
Where: e = predicted error, x = location of point, Z = height value, Zi = interpolated height value 
 
In addition to absolute error, the range (maximum and minimum of error values), and 
mean error were calculated. Standard Deviation and Root Mean Square Error (RMSE) 
were used to predict the accuracy – and provided an expectation of overall error. 
 
Results for all methods and grid sizes were repeated three times, using different 
randomly selected subsets, to ensure consistency. 
 
4 Results 
The resultant surfaces for each of the three grid spacings for the bilinear and the 
Kriging interpolation are shown in figure 3. 
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Figure 3a: Showing the surfaces created from three different grid sizes using a 
bilinear interpolator 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Surfaces created using Bilinear Interpolation

(b) 2m grid 

(c) 4m grid 

Surfaces created using Bilinear Interpolation

 
 (ii) 2m grid

(iii) 4m grid 

(i) 1m grid 

(b) 2m grid 

(c) 4m grid 

Surfaces created using Ordinary Kriging (OK)

(i) 1m grid (ii) 2m grid 

(iii) 4m grid 

Surfaces created using Ordinary Kriging (OK)
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Figure 3b: Showing the surfaces created from three different grid sizes using ordinary 
Kriging 
 
As anticipated, Figures 3a and 3b show that there is a loss of detail in surface form at 
lower resolutions with both the bilinear and the Kriging methodology. The kriged 
surfaces exhibit smoother edges than the bilinear surface at all resolutions, however 
there is little real qualitative difference between the surface forms. Indeed, the effect 
of the decrease in resolution on the accuracy of the modelled surface requires 
quantification. This investigation was designed to test whether there was a significant 
increase in accuracy with increasing resolution for all of the interpolation methods. If 
it is shown that there is no significant increase in error with lower resolutions then it 
follows that the greater computation and storage implications for higher resolution 
grids are not be justified. The jack-knifing methodology was also designed to assess 
the stability of the interpolation methods. It is suggested here that a more stable, or 
robust method, will exhibit only very slight increase in error at lower resolutions. The 
results of  run 1 are shown below. 
 
Table 1: Results of Run #1 
 
    Max 

error 
(m) 

Min 
error(m) 

Std Dev 
(m) 

RMSE 
(m) 

Mean 
(m) 

KRIGE 1m 6.645 -6.587 1.8829 1.8686 0.011515 
  2m 6.522 -6.281 1.8371 1.8231 -0.0002 
  4m 7.549 -5.115 1.9705 1.9583 0.10376 
              
BILINEAR 1m 5.5569 -7.1404 1.9754 1.9635 -0.01888 
  2m 5.2434 -7.2639 1.9271 1.9167 -0.16308 
  4m 4.2895 -7.4366 2.1219 2.2212 -0.73055 
              
BICUBIC 1m 6.1286 -6.3013 2.6447 2.0081 0.023724 
  2m 5.8282 -6.5699 1.9565 1.9427 -0.15169 
  4m 2.9361 -7.4991 2.0209 2.0515 -0.49475 
              
SPLINE 1m 7.2971 -6.2743 2.1804 2.168 0.13414 
  2m 9.2836 -6.1538 2.4014 2.3885 0.15993 
  4m 13.085 -22.733 3.9339 3.9139 -0.27943 
              
NEAREST 1m 8.4 -7.14 2.5792 2.5759 0.29453 
  2m 8.4 -6.94 2.4145 2.4227 0.36381 
  4m 8.33 -14.72 2.6679 2.6467 -0.06254 
 
 
The quantification of error analysis revealed significant differences between the 
interpolation methods in terms of the amounts of error they introduced to the DSM. It 
was found that Ordinary Kriging produced the lowest error per point at all resolutions 
for all three experiments. Ordinary Kriging was also considered to be one of the most 
stable of all methods across all three experiments, as it exhibited only a small increase 
in error (4cm RMSE) with lower resolution grids.  The greatest errors were introduced 



 10

by the nearest neighbour method which produced errors in the region of between 50 
and 60cm greater than the kriged surfaces for the same resolution. All three 
experiments showed that there was very little difference between the errors introduced 
by the bilinear and the bicubic methods. However, in two out of the three 
experiments, the bilinear method produced lower error than the bicubic method. This 
was surprising, given that higher order polynomials generally produce better results 
than lower order counterparts. Similarly, the biharmonic splining method generated 
comparatively poor results . For the 1m and 2m grid spacings the splining produced 
errors of a similar magnitude to the bilinear and bicubic methods. However, for the 
4m grid the splining method produced very large errors – predicting much higher 
results for the surface than reality. This was considered to be a direct result of the 
highly discontinuous urban surface being modelled here – in such areas the splining 
interpolator will attempt to overly smooth the surface, overshoot, and attempt to 
extrapolate at the edge of the data – all contributing to slightly higher errors over the 
surface. 
 
Almost all methods produced least error when interpolated onto the 2m grid. This 
finding concurs with the conclusions of Behan (2000), who suggested that the optimal 
grid sizing should be as close a possible to the original point spacing. The original 
point spacing of the raw data used in this investigation was slightly more than 2m. It 
was considered here that the interpolation onto smaller grid spacings (1m resolution) 
caused the introduction of noise into the surface and this accounts for the higher errors 
which were evident in the 1m grid. The highest errors were found in the four metre 
grid, where information was lost owing to there being more than one raw value per 
pixel. Despite this, it should be noted that the increase of error in the 4m grid was in 
the region of only 20cm for four of the methods. For many applications this small 
increase in error would be outweighed by the decrease in file sizes for the lower 
resolution grids.  
 
Finally, there has recently been a call for not only more information about the 
magnitude of errors within remotely sensed data and its derived products, but also for 
the spatial patterns of such error. In this sense, the spatial output from any analysis  
should be two fold (Atkinson and Foody, 2002): (i) a map of the variable of interest, 
and (ii) some assessment of the uncertainty of that map. With this in mind, the errors 
calculated in this investigation were mapped, and the size of the magnitude at each 
location represented by the size of the point. The error maps for the kriged and the 
biharmonic splining surfaces are shown in Figure 4. 
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Figure 4(b) Location and Magnitude of Errors Created by the Biharmonic Splining 
Interpolator at 3 Different Resolutions.  

 
Figure 4(a) Location and Magnitude of Errors Created by the Kriging Interpolator at 3 
Different Resolutions. Point size relates to magnitude of error. Contours of the surface are 
overlain for context 
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Figures 4(a) and 4(b) clearly show that the pattern of errors are largely coincident 
with the occurrence of breaklines in the subset, and that these errors are larger in the 
lowest resolution (4m) grids for both methods. However, it can be noted that in the 
biharmonic splining 4m grid the pattern of errors is slightly different. Here, the largest 
errors occur around the maximum heights in the raw dataset, namely over the peaks of 
trees. This is consistent with the earlier suggestion that the larger errors in the splined 
surface had been caused by overshoots. Such patterns of error are potentially useful 
for aiding the choice as to which of the interpolation methods to use for a particular 
application. 
 
5 Conclusions 
This investigation has shown that changes in grid sizes have very different effects on 
the magnitude of error introduced by different interpolation algorithms. On the basis 
of the findings of this investigation, the following recommendations are made for the 
modelling of DSMs in the highly discontinuous mix of artificial and natural structures 
that characterise urban environment: 
 

• Where accuracy is the most important factor, optimal grid spacing for any 
interpolation method should be as close as possible to the original point 
spacing. This corroborates the findings of Behan (2000).  

 
• Where grid spacings are close to original point spacings both Kriging and the 

bilinear interpolation offer the most accurate surface representations. Given 
the greater computational demands of Kriging, coupled with the insignificant 
increases in accuracy (~1cm RMSE), it is recommended that in such cases the 
bilinear approach is adequate.  The fact that in this investigation the bilinear 
interpolation algorithm produced better results than the bicubic method was 
surprising, given that the bilinear method is effectively just a simpler version 
of the bicubic method. It was considered that this may be a function of the 
subset used in the investigation. Further work is underway to test this. 

 
• Where file size and/or computation times are the most important factor it is 

suggested that the bilinear interpolator be employed. In terms of computation 
time, the fastest method is the nearest neighbour algorithm, which works up to 
twice as fast as the bilinear method. However, it was found that this method 
produced errors of between 50-150cm greater than the bilinear method in 
urban areas. As such it is recommended that the bilinear algorithm be 
employed for the combination of optimal computation time and accuracy 
offered. It should also be noted that where a low resolution is required (to 
minimise file storage), Kriging produces the most accurate surfaces. However 
the increases in accuracy are in the order of 10-15cms, and it is considered 
here that such small increases in accuracy are outweighed by the 
computational demands of this method, and it is suggested that a deterministic 
interpolation be employed. 

 
• When interpolating onto a lower resolution grid it is recommended that 

biharmonic splining be avoided – owing to the large overshoots created by this 
method in areas of sparse data. This investigation suggests that a more 
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accurate surface may, for city centre surfaces, be produced from a lower order 
polynomial (such as a bilinear interpolator). This conclusion is at variance 
with that of Kidner (2003) who proposed that higher order polynomials will 
always produce a more accurate surface. 

 
• In terms of identifying which interpolation methods are most appropriate for 

modelling different elements of the urban environment, it was noted that the 
Ordinary Kriging surface appeared to represent vegetation more accurately 
than other methods. This is shown in figure 4, where there a fewer errors over 
the vegetation regions in the 4m Kriged surface than there are in the splined 
surface. Ordinary Kriging was also found to create less error on breaklines of 
buildings than other methods, and as such may be more useful for any 
subsequent feature extraction using object geometry. This will be investigated 
further in future work. 

 
• Other future work by the authors will assess the potential for altering the grid 

spacing across the scene to minimise error created during interpolation. 
Additional work looking at a two stage interpolation process is also underway. 
In this approach, the breaklines within the study area are first identified, and 
these used to constrain the Delaunay triangle creation for the bilinear and 
bicubic methods. The results of this new method will then be compared to 
Kriging. Additional work may also look at the effects of using different types 
of kriging for interpolation in urban areas. 

 
 
Ultimately the choice of optimal grid size, and interpolation method depend entirely 
on the application for which the surface is to be used. Studies such as the one 
presented in this paper are merely designed to aid with this decision making and to 
allow the user access to more information about both the magnitude and the spatial 
patterns of errors created by different methods. 
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