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Abstract 
A method for assessing the accuracy of land-cover change products is 
described that evaluates net change at a specified spatial support.  Accuracy is 
quantified by the mean absolute deviation, a metric derived from the absolute 
value of the difference between the map change in a land-cover class and the 
true change in the land-cover class.  Several sampling design options are 
described for collecting the reference data.  Stratification is a key design 
feature because of the desire to increase sample size in the rare high change 
areas of the map.  A protocol for a priori evaluation of different sampling 
designs is described.  Details of the accuracy assessment protocol are 
illustrated via a change product derived from the 1992 and preliminary 2001 
National Land-Cover Data (NLCD). 

 
 
1. Introduction 
Land-cover change data are valuable to describe patterns in the environment, and they are 
often incorporated as driving or explanatory variables in environmental modeling.  
Applications of land-cover change data may require spatially explicit information in the form 
of a map, or use the data aggregated to some spatial unit to investigate relationships at a 
designated spatial support (here we use Dungan et al.'s (2003) definition of support as a 
property of a variable related to analyzing or modeling data).  Although the spatial support 
can be as small as a point, our focus here is on larger areas ranging from 1 ha to several 
hundred square kilometers because environmental assessment and modeling studies often 
aggregate land-cover measured for individual pixels.  The spatial unit employed in the 
assessment may be a regular geometric shape such as a square or circle, or an irregular 
polygon such as a county, province, or watershed.  For example, changes in NDVI over a 
twenty-year period were compiled by watershed for an environmental assessment of the mid-
Atlantic states (Jones et al., 1997), because watersheds are a logical and intuitive unit on 



which to base environmental management decisions.  Likewise, tessellation of a regular 
spatial unit (e.g., 3x3, 5x5 km cells) has been used to examine geographic patterns of the 
impact of land-cover change on nutrient dynamics and breeding bird habitats (Jones et al., 
2001; Wickham et al., 2002).  The watershed- and tessellation-based assessments are similar 
in their philosophy in that it is often necessary to summarize change at the level of individual 
pixels to render them meaningful for environmental assessments and modeling studies. 
 
The objective of this article is to describe a general sampling design and analysis strategy for 
assessing the accuracy of land-cover change at spatial scales larger than a single pixel or 
minimum mapping unit (mmu) that treats small groups of adjacent pixels as homogeneous 
units.  Use of larger assessment units (e.g., counties, watersheds) represents a fundamental 
departure from land-cover change accuracy assessments based on single pixels or a mmu.  
Maintenance of homogeneity is not possible for larger assessment units, and hence crisp 
“from” and “to” land-cover labels cannot be applied.  A county or a watershed does not 
change “from” forest “to” urban homogeneously. Four major themes are addressed: metrics 
to quantify accuracy of change, formulas for estimating these accuracy metrics, sampling 
design, and methods for evaluating the anticipated design performance when planning the 
assessment (i.e., a priori design evaluation).  The assessment strategy is illustrated via an 
example in which the accuracy of change data derived from the 1992 National Land-Cover 
Data (NLCD) of the United States (Vogelmann et al., 2001) and a preliminary version of the 
2001 NLCD. Users may be tempted to simply overlay the two NLCD products pixel by pixel 
to derive change.  This use of NLCD data is discouraged because it likely will result in large 
amounts of erroneous mapped change due to inexact spatial registration of the two products 
and other problems associated with post-classification change detection. Although a per-pixel 
change map is not an intended use of NLCD data, it is anticipated that by spatially 
aggregating the NLCD data, the change values will prove useful for applications employing 
the data at larger spatial supports.   
 
The methodology we propose is different in objectives and implementation from the 
traditional approach to accuracy assessment of land-cover change described in Biging et al. 
(1998) and Congalton and Green (1999).  An example helps to highlight the differences.  
Suppose the original change map consists of 30-m pixels.  The traditional approach to 
accuracy assessment is based on an error matrix and measures of accuracy derived from this 
matrix.  For example, the proportion of those pixels mapped as changing from forest to urban 
that in reality have changed from forest to urban is the user's accuracy for forest to urban 
change.  The change accuracy error matrix is large even for a small number of land-cover 
classes because the error matrix shows all possible transitions (i.e., “from-to” changes) 
between classes, as well as a “no change” category for each land-cover class.   
 
The assessment of net change is designed to address different objectives from the traditional 
approach.  First, the spatial support to which the assessment is intended is specified (e.g., a 20 
by 20 pixel block).  The support is dictated by the application(s) for which the map will most 
likely be used. Accuracy is then defined in terms of the map change and the true change 
measured on spatial units corresponding to this spatial support.  For example, to assess 
accuracy of forest change, the mapped area of forest for both time t1 and time t2 for each 
spatial unit is measured, and net change is the difference between these values.  Map net 
change is then compared to the true net change of each spatial unit.  Similar comparisons are 
conducted for each land-cover class.  This approach evaluates change aggregated to the 
predetermined spatial support, and compensating errors within the assessment unit may offset 
each other (e.g., a misclassification of one pixel as forest-to-urban change may be offset by a 



misclassification of one pixel as urban-to-forest change).  In contrast, the traditional approach 
focuses on location-specific accuracy, addressing the question of whether each individual 
pixel’s change status is mapped correctly.  Assessing accuracy for aggregations of pixels is 
sometimes labeled "non-site-specific" accuracy, a label that often connotes aggregation over 
the entire region mapped.  The assessment we propose is "non-site-specific" to a degree, but 
also captures some spatially explicit character of accuracy at the scale of the spatial unit 
defined by the support. 
 
Another fundamental difference in the approaches is the definition of change assessed, net 
change in our approach versus gross change in the traditional approach.  Net change is 
change at an aggregate level (Fuller, 1999, p. 336), for example the difference in the area of 
forest between time t1 and time t2.  Net change does not focus on the internal, location-
specific mechanisms of how change takes place.  For example, a net loss of 10% forest could 
be the result of losing 10% of the forest area to urban land cover, losing 5% of the forest area 
to agriculture and 5% to urban, or losing 25% of the forest area to agriculture offset by a 15% 
gain in forest attributable to change from agriculture to forest.  The traditional approach to 
accuracy assessment focuses on gross change.  Gross change is defined at the individual pixel 
level, and addresses the specific land-cover transitions of change.  A pixel-by-pixel change 
map represents gross change.  For example, gross change would quantify the number of 
pixels changing from forest to agriculture.  The "from-to" change error matrix advocated by 
Congalton and Green (1999) in the traditional approach to change accuracy assessment 
reflects the focus on gross change. 
 
 
2. Accuracy Assessment Protocol 
Change accuracy assessment requires the three basic components common to accuracy 
assessment of a single point in time.  These components are the response design for 
characterizing the ground or reference condition, the sampling design, and the analysis 
(estimation formulas).  Each of these components will be described for the aggregated change 
accuracy assessment. 
 
2.1 Response design 
The response design includes the protocols for determining the true change on the ground, as 
well as methods for defining agreement between the true change and the map change. 
“Reference data" is used to describe the change data characterizing the ground condition.  
These reference data likely also contain errors, but they are assumed to represent a more 
accurate characterization of reality than the map itself.  The response design requires 
choosing the spatial unit upon which the assessment will be based.  The assessment unit may 
be a fixed-area plot such as a square, rectangle, or circle, or an irregular unit such as a 
watershed or county.  These units should partition the region assessed, and they should retain 
their identity for both dates (i.e., the same set of units is applicable to both time t1 and time 
t2).  The choice of spatial unit obviously strongly influences the assessment, and the decision 
is complicated by the likelihood that users may be interested in different spatial supports.   
 
Our example analyses based on the NLCD change data employ a 20x20 pixel (36 ha) 
assessment unit.  This unit was chosen because it is large enough to diminish some of the 
effect on estimates of net change attributable to misregistration when overlaying the two 
NLCD products, it is a manageable size for obtaining reference data, and it is of sufficient 
size to be relevant for applications employing the change data.  For each assessment unit, the 
area or percent of area occupied by each land-cover class is obtained from the 1992 and 2001 



NLCD.  Net change for each land-cover class is then the difference between the 2001 and 
1992 values. 
  
2.2 Quantifying accuracy 
The descriptive results of the accuracy assessment are organized by “reporting domains" of 
change.  These domains are defined by the magnitude and direction of change for each land-
cover type.  A reporting domain is a subset of the full region, and it is defined to enhance the 
interpretive value of the description.  A domain consists of all spatial units in the region that 
meet the defining conditions of the domain, and a spatial unit may belong to more than one 
reporting domain.  For example, one set of reporting domains for forest change could be 
forest loss of 15% or more (>–15% change), 7.5 to 15% forest loss (-7.5% to –15% change), 
2.5% to 7.5% loss, 2.5% loss to 2.5% gain (-2.5% to 2.5%), 2.5% to 7.5% gain in forest, 
7.5% to 15% gain, and greater than 15% gain in forest.  The reporting domains defined in this 
example set include very high change domains, and thus target a scenario in which map high 
change values are anticipated.  Reporting domains can be defined or revised after the data are 
collected, and it is possible that the domains defined for one land-cover type differ from the 
domains of another land-cover type.   
 
It is important to distinguish reporting domains from strata employed in the sampling design.  
Reporting domains do not impact how the sample is selected, whereas strata directly 
influence the sampling units chosen.  Strata constitute a fixed structure of the sampling 
design, whereas reporting domains are a characteristic of the analysis.  A sampling unit can 
belong to several reporting domains, but must belong to exactly one stratum. 
 
The primary descriptor of change accuracy emphasized in this article is the mean absolute 
deviation, MAD, computed for each reporting domain.  The notation required is as follows.  
Let mu denote the net change value derived from the map for sampling unit (block) u, and ru 
denote the net change value derived from the reference data, with the difference du=ru-mu.  
MAD is the average of |du| for all units in the reporting domain within the region.  For 
example, for the forest class, MAD is computed for each reporting domain to quantify 
average absolute disagreement between the map net change and reference net change of 
forest. 
 
2.3 Sampling design 
In practice, the region mapped will need to be sampled and estimates of the accuracy metrics 
derived from the sample data.  The ultimate sampling unit is the spatial unit (support) defined 
for the evaluation (e.g., a 20x20 pixel block in the NLCD example).  For those reporting 
domains that are of high interest but represent a relatively rare condition, stratification may 
be implemented to ensure MAD estimates are acceptably precise for these domains.  In the 
NLCD change assessment, the rare domains of greatest interest are the high change domains 
(either gain or loss).  Do these areas of high map change truly represent high change on the 
ground?   
 
The focus on high change strata creates a complication in the stratum assignment process.  
Some elements (spatial units) of the population may meet conditions for membership in more 
than one stratum.  For example, if both a high loss forest stratum and a high gain urban 
stratum exist, it is entirely possible that some elements of the population will have both high 
forest loss and high urban gain, and thus are candidates for two different strata.  A 
requirement of stratified sampling is that each element must belong to exactly one stratum, so 
the assignment protocol must guarantee that this requirement is met. The protocol we invoke 



is sequential, assigning each element to a stratum via a pre-determined order for checking if 
an element meets the conditions defining each stratum.  An example is provided in section 
3.2.  
   
Once the strata have been identified, the sample allocation to strata must be decided.  When 
the objective is to obtain precise estimates for each stratum, conventional guidelines for 
stratified sampling suggest allocating larger sample sizes to the more variable strata and to 
the more important strata.  The emphasis on reporting domains to characterize accuracy 
requires recognizing an additional dimension of the sample allocation decision.  Because 
many of the reporting domains are not defined as strata, stratification may actually diminish 
precision of these domain estimates relative to simple random sampling (SRS).  That is, while 
the stratified design will improve precision for those domains targeted as strata, it may be 
detrimental to precision of estimates for other domains.  This feature is illustrated in the 
numerical examples provided later.  Consequently, choosing strata and allocating sample size 
to strata must consider not only will these choices improve precision for some domains, but 
also how much harm stratification creates for precision of other reporting domains. 
 
 
3. Example Assessment Using NLCD Change Data 
We illustrate the accuracy assessment protocol via application to a change product consisting 
of 10,000, 20x20 pixel blocks, with each pixel 30 m per side.  These 10,000 blocks represent 
a simple random sample from a larger population of 180,000 such blocks located in the mid-
Atlantic region of the United States (Figure 1).  The map labels assigned to each pixel in this 
population are derived from the 1992 NLCD and a preliminary version of the 2001 NLCD.  
For some of the illustrative analyses, we also employ hypothetical reference data derived 
from the change between the 2001 NLCD and 1989 National Oceanographic and 
Atmospheric Administration (NOAA) Coastal Change and Analysis Program (CCAP) data.   
 
The NLCD (Vogelmann et al., 2001) and NOAA CCAP (Dobson et al., 1995) land-cover 
data sets were grouped into a simple classification scheme for the comparison of map and 
reference change (Table 1).  The simple classification scheme approximates the Anderson et 
al. (1976) Level I detail.  Grouping into a simpler classification scheme was done in part to 
reconcile the differences between CCAP and NLCD at the more detailed Level II 
classification, and because there is little compelling reason for change detection at Level II.  
Environmental managers and land use planners are less interested in change within different 
types of forest or urban, for example, than changes between forest, agriculture, urban, and 
wetland.  Forested wetlands in all three data sets were grouped with upland forest in the 
generalized scheme because previous NLCD accuracy assessments indicated that reference 
data for wetland forests were nearly as likely to be labeled as upland as wetland (Yang et al., 
2001; Stehman et al., 2003).  At a generalized level, a pixel labeled as wetland forest would 
be considered correct if the reference label was either the wetland or forest class. The most 
significant disagreement between NOAA and NLCD generalized classes occurs with the 
agricultural label.  The NOAA grassland class (detailed legend) includes agricultural 
pasturelands as well as golf courses and the grass infields surrounding airport runways.  The 
NLCD classification scheme attempts to differentiate between pasturelands and other grass-
covered land uses.  As a result, some areas labeled agriculture in the NOAA data will be 
labeled urban in the NLCD data.  These conceptual differences will be reflected 
quantitatively in the "map" versus "reference" comparisons. 
 
3.1 Accuracy of net change for the NLCD product  



Table 2 displays the mean and median absolute deviations by reporting domain for forest, 
agriculture, and urban net change derived from the NLCD (recall that the 2001 NLCD and 
1989 CCAP land-cover maps are used as the hypothetical reference data in this example).  

Figure 1. Mid-Atlantic region of the United States used in the example net change accuracy 
assessment.  The cross-hatched region is the area from which the 10,000 20x20 pixel blocks 
were selected.



 Table 1.  Grouping of Land-cover Classes 
 

NLCD 1992 Classes NLCD 2001 Classes NOAA 1989 Classes 
Detailed General Detailed General Detailed General 

Open water Water Open Water Water High intensity developed Urban 
Low-density residential Urban Developed Open Space Urban High intensity developed Urban 
High-density residential Urban Developed low intensity  Urban Cultivated land Agriculture 
Commercial, Industrial, 
Transportation 

Urban Developed medium 
intensity 

Urban Grassland Agriculture 

Bare rock, sand, clay Barren Developed high intensity Urban Deciduous Forest Forest 
Mining Urban Natural Barren Barren Evergreen Forest Forest 
Transitional1 No data Deciduous Forest Forest Mixed Forest Forest 
Deciduous Forest Forest Evergreen Forest Forest Scrub/shrub Forest 
Evergreen Forest Forest Mixed Forest Forest Palustrine forested 

wetland 
Forest 

Mixed Forest Forest Hay/Pasture Agriculture Palustrine scrub/shrub 
wetland 

Forest 

Hay/Pasture Agriculture Row crops Agriculture Palustrine emergent 
wetland 

Wetland 

Row crops Agriculture Woody wetland Forest Estuarine emergent 
wetland 

Wetland 

Urban, recreational 
grasses 

Urban Emergent Wetland Wetland Unconsolidated shore Barren 

Woody wetland Forest   Bare land Barren 
Emergent Wetland Wetland   Water Water 
 

1 Pixels labeled transitional in the NLCD 1992 data were converted to “no data” in all data sets. 
 
 
Table 2. Mean and Median Absolute Deviations by Domains of Forest, Agriculture, and 
Urban Change for a Population of N=10,000 20x20 pixel blocks.  The domains are defined 
by the NLCD net change for each class, and Mk denotes the number of 20x20 pixel blocks in 
the domain. 
 
 
               Forest             Agriculture                 Urban       
Domain   MAD   Median  M k       MAD   Median  M k        MAD    Median   M k     
   1    0.116  0.085  1606     0.144  0.123   380     0.241   0.203   139 
   2    0.075  0.063  1734     0.099  0.085   616     0.131   0.105   238 
   3    0.060  0.040  1999     0.076  0.050  1112     0.081   0.058   527     
   4    0.044  0.020  2802     0.047  0.020  3323     0.015   0.003  7565 
   5    0.075  0.053   979     0.066  0.040  2171     0.045   0.020   827 
   6    0.104  0.083   560     0.084  0.065  1481     0.071   0.048   377 
   7    0.140  0.126   320     0.131  0.093   917     0.097   0.063   327 
 
Domains (net change): 
1: >-15% (more than 15% loss)   
2: -15% to -7.5% 
3: -7.5%to -2.5% 
4: -2.5% to 2.5% 
5: 2.5% to 7.5% 
6: 7.5% to 15% 
7: >15% (more than 15% gain) 
 
The results generally show a pattern of increasing disagreement moving from the low change 
to the high change domains.  The mean absolute deviation is generally higher than the median 
absolute deviation, indicating a right skewed distribution of absolute deviations, as well as 
potential extreme high values of |du|.  The large values for mean and median absolute 
deviation suggest fairly substantial disagreements between the map and reference change 
condition.  For example, MAD is 0.116 for forest domain 1 (forest loss exceeding 15%), 
indicating that the reference change differs (in absolute value) from the map change by nearly 
12% on average.  This large disagreement is not surprising given the preliminary nature of 



the 2001 NLCD product, and the fact that errors in the NOAA CCAP 1989 land-cover data 
will also contribute to disagreement.  Table 3 displays mean and median raw deviations (i.e., 
not absolute value).  The pattern of these differences is also intuitively reasonable, with large 
negative values occurring for domain 1 (high loss), followed by a monotonic increase in the 
deviations, ultimately peaking at the large deviations of domain 7 (high gain).  That is, where 
the map displays large losses of a land-cover class, the reference data (on average) show that 
the loss was not as severe as the map indicates, thus the negative mean or median difference 
for the low domains.  The converse occurs when map change shows high gains in a class. 
 
Table 3. Mean and Median Deviations by Domains of Forest, Agriculture, and Urban Change 
for a Population of N=10,000 20x20 pixel blocks.  Domains 1-7 are defined (see Table 2) by 
the NLCD net change for each class, and Mk denotes the number of 20x20 pixel blocks in the 
domain. 
 
                Forest               Agriculture               Urban         
Domain   Mean   Median   M k      Mean   Median   M k      Mean   Median   M k     
  1    -0.088   -0.065  1606   -0.110  -0.113   380    -0.232  -0.203   139 
  2    -0.046   -0.048  1734   -0.052  -0.068   616    -0.115  -0.099   238 
  3    -0.029   -0.023  1999   -0.007  -0.028  1112    -0.048  -0.040   527 
  4    -0.005    0.000  2802    0.019   0.000  3323     0.003   0.000  7565 
  5     0.027    0.038   979    0.046   0.025  2171     0.007   0.005   827 
  6     0.056    0.070   560    0.066   0.053  1481     0.036   0.030   377 
  7     0.105    0.111   320    0.116   0.083   917     0.060   0.038   327   
 
 
3.2 Sampling design for NLCD change example 
The sampling design evaluated is a stratified random sample, with the strata defined based on 
the map net change.  A sequential, one-stratum-at-a-time approach was adopted to assign 
blocks to strata to satisfy the requirement that each areal unit (20x20 pixel block) in the 
region must be assigned to exactly one stratum.  At each step, each block is checked to 
determine if it should be assigned to the stratum of record at that step.  If the block meets the 
conditions defining the stratum, the block is placed in that stratum and removed from 
consideration as a member of any subsequent stratum.  Those blocks not assigned at this step 
of the sequence nor assigned at a previous step are passed on to the next step.  Suppose seven 
strata are defined, with the stratum assignment sequence as follows: 1) 15% forest loss, 2) 
15% forest gain, 3) 15% urban loss, 4) 15% urban gain, 5) 15% agriculture loss, 6) 15% 
agriculture gain, and 7) all blocks not assigned in the first six steps (catch-all stratum 
consisting of low and moderate change blocks).  The stratum assignment protocol is applied 
to all blocks in the mapped region (population). 
 
The sequential approach represents one solution to the problem of how to assign blocks to 
strata when some blocks may satisfy conditions for membership in more than one stratum.  
For example, it is possible for a block to have high forest loss and high urban gain (e.g., 
forest clearing for residential development).  Depending on the order specified for stratum 
assignment, a block could be designated to the high loss forest stratum (stratum 1) or the high 
gain urban stratum (stratum 4).  In the example sequence, such a block would be assigned to 
stratum 1, the high forest loss stratum.  As long as each block belongs to just one stratum, we 
are free to choose the assignment sequence.   
 
Numerous other stratification options could be created.  One option is to define strata based 
on a cross-classification of change types, as for example, by defining a stratum as having 
15% loss in Forest and 15% gain in Urban.  Alternatives to the sequential assignment 



protocol could be envisioned to accommodate blocks that meet conditions of more than one 
stratum.  For example, we could randomly assign the block to one stratum or the other so that 
half the time such a block is assigned to each stratum.  The current sequential procedure 
assigns all such blocks to the same stratum. 
 
 
3.3 Estimation for the stratified design 
The formulas and theory for estimating MAD for reporting domains are found in Cochran 
(1977, Sec. 5A.14) and Sarndal et al. (1992, p. 394).  Both texts recommend using a 
combined ratio estimator to estimate a domain mean when the domain cuts across stratum 
boundaries, as is typically the case for the approach described.  Recall that du is the difference 
between the map change and reference change.  The parameter (population value) for the 
mean absolute deviation for domain k is then ||∑

U
ud /Mk, where U denotes the set of all Mk  

20x20 pixel blocks in the region.  For block u of stratum h, let yhu=|du| if block u is in domain 
k, yhu=0, otherwise, and let xhu=1 if block u is in domain k, and xhu=0, otherwise.  Note that 
both yhu and xhu are 0 for any block not in domain k.  MAD for domain k can be expressed as 
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population total of |du|, and the denominator is simply Mk.  Standard formulas for stratified 
sampling can readily be applied to estimate the numerator and denominator of this ratio, 
 

∑

∑

=

== H

h
hh

h

H

h
h

k

xN

yN
R

1

1ˆ .                                                                     

(1) 
 
The estimated variance of kR̂  is  

hhxykhxkhyhh

H

h
hkk nsRsRsNnNMR /)ˆ2ˆ)(1()ˆ1()ˆvar( ,

2
,

22
,

1

22 −+−= ∑
=

),    (2) 

where 2
,hys  is the sample variance of yhu in stratum h, 2

,hxs  is the sample variance of xhu in 

stratum h, hxys ,  is the sample covariance between yhu and xhu in stratum h, and kM̂  is the 

estimated number of blocks in the domain (i.e., the denominator of kR̂ ).  All the statistics and 
variables in equations (1) and (2) are specific to domain k, but the subscript k is not used in 
most cases to simplify notation.  For some domains, all values of yhu and xhu may be 0 for one 
or more strata because no sample blocks of domain k are present for that stratum.  This does 
not create a problem because the contribution to kR̂  or to var( kR̂ ) is zero for such strata.  
Lastly, if we replace |du| with du, the formulas estimate the mean difference and the variance 
of the estimated mean difference (as opposed to mean absolute difference). 
 
3.4 A priori evaluation of sampling design 
In planning the sampling design, it is invaluable to evaluate the potential performance of one 
or more candidate designs.  The primary information available at the planning stage is the 
map change derived from the 1992 and 2001 NLCD products (i.e., the map change product 
itself).  This information can be used to define candidate change strata, and to evaluate design 
performance.  The a priori evaluation of various design options focuses on precision 



(standard errors) of the estimates specified by the accuracy assessment objectives.  In the 
NLCD example, the estimation objectives focus on the reporting domains for each of three 
land-cover classes, forest, urban, and agriculture. 
 
Two analyses are proposed for the a priori evaluation of design performance.  One is the 
expected sample size for each reporting domain of each land-cover type (i.e., the number of 
sample blocks expected to occur in the >15% forest loss domain, the number in the domain 
for less than 2.5% gain or loss, etc.).  The expected sample size for a domain is computed by 
multiplying the proportion of the stratum occupied by that domain times the sample size for 
that stratum, and then summing the results over all strata.  For example, suppose we have 
three domains and two strata, and a stratified random sample of nh=100 blocks from each 
stratum will be selected.  The stratum proportions of domains A, B, and C are 0.6, 0.3, and 
0.1 in stratum 1, and 0.45, 0.5, and 0.05 in stratum 2.  The anticipated sample sizes in each 
domain resulting from this design (contributions from strata 1 and 2 in parentheses) would be 
105 (60 and 45) in domain A, 80 (30 and 50) in domain B, and 15 (10 and 5) in domain C.  
Because of the randomization built into the sampling protocol, these are expected (average) 
sample sizes over all possible samples.  The outcome of an individual sample will vary from 
these average numbers.   
 
The second analysis is much more detailed requiring construction of a hypothetical 
population of reference (i.e., true change) data.  Once this population has been constructed, du 
is known for all blocks in the population, and the precision of the estimated MAD for each 
domain can be calculated via  

hhxykhxkhyhh

H

h
hkk nSRSRSNnNMRV /)2)(1()1()ˆ( ,

22
,

22
,

1

22 −+−= ∑
=

),    (3) 

where 2
,hyS  is the population variance of yhu in stratum h, 2

,hxS  is the population variance of xhu 

in stratum h, hxyS ,  is the population covariance between yhu and xhu in stratum h, and Rk is the 

true MAD for domain k.  V( kR̂ ) represents the variability of the estimator kR̂ over all possible 
samples that could be selected from the population using the design under consideration.  In 
practice, V( kR̂ ) is estimated by var( kR̂ ) using the sample of blocks actually selected for the 

assessment.  At the planning stage, V( kR̂ ) is the relevant quantity because the sample has yet 
to be chosen.   
 
Because calculating V( kR̂ ) requires knowing du for the population (census), the a priori 
design evaluation depends on constructing one or more hypothetical populations that 
represent a good approximation to the true change condition.  That is, the goal is to create a 
population that reflects the true magnitude and spatial pattern of the map errors to the degree 
that the general findings of the a priori evaluation will reveal preferred design options.  The 
multi-objective character of accuracy assessment requires us to examine precision for the 
suite of domain estimates.  No design option is likely universally best for all domain 
estimates, so choosing a design requires considering which domain estimates are most 
important. 
 
To illustrate the approach, we use the population of 10,000 blocks described earlier for which 
we have hypothetical reference data.  Five stratification options are evaluated.  These include 
different numbers of strata (H=5, 6, or 7), different assignment sequences of blocks to strata, 
and different choices of the strata themselves.   The five options are listed below.  The % area 



of gain or loss defining the strata is specified in parentheses for the first stratum and this % 
applies to all strata for that option.  The “no change” stratum is always defined as net change 
between 2.5% loss and 2.5% gain (-2.5% to 2.5%).  

Option A: 7 strata, with the assignment sequence urban gain (>15%), urban loss, 
forest gain, forest loss, agriculture gain, agriculture loss, and no change 

Option B: 6 strata, with the assignment sequence forest gain (>15%), forest loss, 
urban gain, urban loss, agriculture loss, and no change  

Option C: 6 strata, with the assignment sequence urban gain (>15%), urban loss, 
forest gain, forest loss, agriculture loss, and no change  

Option D: 5 strata, with the assignment sequence urban gain (>15%), urban loss, 
forest gain, agriculture loss, and no change 

Option E: 5 strata, with the assignment sequence as in option D, but gain and loss are 
defined as >10% instead of >15%. 
 
Table 4 displays the anticipated sample sizes for the seven reporting domains for two of the 
stratified options.  As a crude guideline, assume that a sample size of 40-50 blocks would 
produce adequate precision for a domain estimate.  Because the forest domains are all 
relatively common in the region, stratification does not produce a marked difference in the 
distribution of the sample among the forest domains (Table 4).  The main advantage of 
stratification for the forest domain estimates accrues to domains 6 and 7, where the sample 
size is increased from 22 and 13 to over 40 in both domains.  The estimates for the urban 
domains benefit most from the stratified options.  The no change urban domain (domain 4) 
dominates in the region, so SRS will result in 75% of the sample being no urban change 
blocks.  Because both options A and D have urban domains 1 and 7 as the first two strata in 
the sequential selection, the design ensures a sample size of 50 in both domains.  The 
stratified options do not increase the sample size above 30 in domains 2, 3, 5, and 6, so the 
stratified options primarily benefit only the rarest urban domains.  The agriculture domains 
are affected similarly, with the rarest domain (domain 1) benefiting from its identification as 
one of the strata, but other domains not gaining much in sample size relative to SRS.  In 
general, note that those domains not identified as strata have smaller expected sample sizes 
than would result from SRS.  This is the crux of the characteristic that the stratified designs 
may have poorer precision for these domains than SRS. 
 
Table 4. Expected sample sizes by domain for forest, agriculture, and urban for stratified 
sampling options A (StrA) and D (StrD), and simple random sampling (SRS).  Total sample 
size is 400 for all three designs.  Stratified option A has a sample size of nh=50 per stratum 
except for the low change stratum which has 100, and stratified option D also has a sample 
size of nh=50 per stratum with 200 samples in the low change stratum.  Option A has 7 strata, 
and option D has 5 strata.   
 
            Forest            Agriculture            Urban 
 Domain  StrA  StrD  SRS     StrA  StrD  SRS     StrA  StrD  SRS   
  1      72    55    64      92    92    15      50    50     6 
  2      68    53    69      20    24    25      12     7    10 
  3      49    58    80      23    32    44      19    13    21 
  4      75    92   112      65    91   133     214   228   303 
  5      35    41    39      52    67    87      26    29    33 
  6      44    46    22      47    51    59      22    23    15 
  7      57    57    13      94    40    37      50    50    13 
 
 



The precision resulting from each stratification option for the seven reporting domains of 
each land-cover class is shown in Table 5.  Precision for SRS is used as the baseline for 
comparison, and the sample size is maintained at n=400 for all designs, both stratified and 
SRS.  Negative values in Table 5 indicate a reporting domain for which the stratified design 
improves precision relative to SRS, and positive values represent domains in which SRS 
produces better estimates.  The results of Table 5 should be examined for two key features: 
how much does stratification improve precision for the important high change domains (i.e., 
large negative values for domains 1 and 7), and how much worse than SRS are the stratified 
estimates for those domains not defined as strata (i.e., large positive values for domains 2 
through 6)? 
 
Stratification improves precision for those reporting domains identified as strata, but typically 
results in precision poorer than SRS for the remaining domain estimates.  This is not an 
unexpected result.  Because the strata are constructed to focus sampling effort on the high 
change areas, these strata are not necessarily a good choice for all domain estimates.  Most 
domain estimates combine sample data from several strata, but these strata may not be 
internally homogeneous for all domain variables.  Internal homogeneity is the condition 
conducive to precise estimation for stratified sampling.  The design implications of these 
results are that strata should be chosen to focus effort on only the most important domain 
estimates, and the stratification chosen should not result in variances much higher than would 
be achieved by SRS for those domains not identified as strata.   
 
The urban results provide a good illustration of the evaluation process.  All five stratification 
options have two high urban change strata, one for high loss and one for high gain, 
representing domains 1 and 7.  Because these two domains are identified as strata, the 
stratified options are better than SRS (note the negative numbers) except for one case, 
domain 7 for Option B.  Option B's sequence differs from the other four in that the urban 
stratum assignments are made after blocks are assigned to the high change forest strata.  
Some of the high urban gain blocks (urban domain 7) are likely assigned to the high forest 
loss stratum, and this produces slightly poorer precision for urban domain 7 than the other 
four stratification options. 
 
The results for forest domain 1 provide another interesting outcome.  Relative to SRS, 
stratification does not improve precision for this domain because it is a large domain.  For 
example, under option B, we ensure that exactly 50 sample blocks from forest domain 1 are 
selected.  Because this domain contains approximately 16% of the blocks in the population, 
on average SRS of 400 blocks will produce 64 sample blocks from this domain.  The larger 
expected SRS sample size (n=64) results in a more precise estimate than the stratified options 
(n=50).  Therefore, a domain that includes a large proportion of the region's blocks (i.e., a 
common domain) will not require identification as a stratum because adequate sample size 
for such a domain will be produced by SRS. 
 
Another important conclusion derived from this a priori evaluation is that the sample size in 
the No Change stratum (i.e., less than 2.5% gain or loss) should be large.  This is a standard 
recommendation when many estimates are required, such as the multiple domain estimates 
employed to describe accuracy of change.  Increasing the sample size in the large No Change 
stratum is tantamount to creating a large simple random sample.  SRS is not tailored to 
enhance precision for any particular domain estimate, but in contrast to stratification, it does 
not diminish precision for those domains not identified as strata.   



Table 5. Comparison of precision of domain estimators for various stratified sampling 
options.  All designs have n=400 20x20 pixel sample blocks selected from the N=10,000 
blocks comprising the population.  The sample sizes are 50 per stratum, except for the “no 
change” stratum that has all remaining samples needed to make up the total of 400.  The 
seven reporting domains are the same as in Table 2, and the 'All' row represents the estimates 
for the entire region.  The column Mk shows the number of blocks in the domain.  The SRS 
column is the standard error of the domain estimator under simple random sampling.  All 
other columns display the difference between the standard error of SRS and the stratified 
option, with positive values indicating that SRS is more precise for that domain.  
 
a) Forest Domains 
                        Stratified Sampling Option    
Dom   M k      MAD      A      B      C      D      E     SRS      
 1   1606   0.116   0.001  0.002  0.001  0.005  0.005   0.014 
 2   1734   0.075   0.010  0.004  0.004  0.003  0.002   0.008 
 3   1999   0.060   0.011  0.005  0.005  0.003  0.003   0.009 
 4   2802   0.044   0.011  0.005  0.005  0.003  0.003   0.008 
 5    979   0.075   0.015  0.006  0.006  0.004  0.003   0.013 
 6    560   0.104   0.014  0.006  0.006  0.005 -0.002   0.021 
 7    320   0.140  -0.017 -0.016 -0.017 -0.017 -0.009   0.031   
All 10000   0.073   0.002  0.001  0.001  0.001  0.001   0.005  
 
 
b) Agriculture Domains 
 
                        Stratified Sampling Option    
Dom   M k     MAD      A      B      C      D      E      SRS   
 1    380   0.144  -0.014 -0.015 -0.014 -0.015 -0.008   0.027 
 2    616   0.099   0.013  0.006  0.006  0.006 -0.001   0.017 
 3   1112   0.076   0.013  0.006  0.006  0.005  0.004   0.014 
 4   3323   0.047   0.008  0.004  0.003  0.003  0.002   0.007 
 5   2171   0.066   0.009  0.004  0.004  0.003  0.002   0.010 
 6   1481   0.084   0.007  0.004  0.003  0.004  0.003   0.011 
 7    917   0.131  -0.001  0.001  0.000  0.007  0.006   0.022   
All 10000   0.075   0.002  0.001  0.001  0.001  0.001   0.005  
 
c) Urban Domains 
 
                        Stratified Sampling Option    
Dom   Mk    MAD      A      B      C      D      E      SRS        
 1    139   0.241  -0.055 -0.049 -0.055 -0.055 -0.044   0.076 
 2    238   0.130   0.025  0.021  0.020  0.023  0.003   0.036 
 3    527   0.081   0.013  0.010  0.008  0.009  0.007   0.018 
 4   7565   0.015   0.003  0.003  0.001  0.001  0.001   0.002 
 5    827   0.045   0.011  0.012  0.005  0.004  0.003   0.012 
 6    377   0.071   0.012  0.018  0.007  0.008  0.001   0.019 
 7    327   0.097  -0.014  0.008 -0.014 -0.014 -0.009   0.027   
All 10000   0.032   0.001  0.001  0.000  0.000 -0.000   0.003 
 
 
 
4. Discussion 
Several components of the net change accuracy assessment protocol merit additional 
development.  The methods described in this article are based on a single spatial support, for 
example the 20x20 pixel block in the NLCD analyses.  But applications of change products 
will undoubtedly span a range of spatial supports.  Using the protocol outlined, it is possible 
to assess accuracy for spatial support smaller than that chosen to determine the original 



spatial unit of the assessment.  That is, in our example NLCD assessment, it would be 
possible to evaluate a spatial support smaller than the 36 ha unit used as the sampling unit.  
Each 20x20 pixel block could be partitioned into 4 10x10 pixel blocks, 16 5x5 pixel blocks, 
or even 100 2x2 pixel blocks.  The data analysis for the smaller support sizes requires one-
stage cluster sampling formulas treating the smaller units (e.g., the 10x10 pixel blocks) within 
the larger original sampling units as secondary sampling units.  The sampling design is not 
tailored to control precision of the estimates for these smaller spatial supports.  Consequently, 
we should not expect the assessment to be as good as it would be had the design been created 
with this spatial support as the focus.   
 
Another important question related to spatial support is how large of a spatial unit can be 
reasonably assessed.  For example, if applications commonly employ a spatial support of 5 
km by 5 km, is it possible to obtain quality reference data for units of this size?  Interpreting 
change over such large areas may be problematic.  One possibility we are exploring is the use 
of two-stage cluster sampling.  Rather than interpret an entire sampling unit, we would 
employ a probability subsample of smaller secondary sampling units within each large unit to 
estimate net change of the larger unit.  Multistage sampling may also accommodate the desire 
to assess multiple spatial supports.  
 
The sampling design we have described is based on a fixed partition of the region into units 
corresponding to the spatial support chosen.  This approach has two unsatisfying features.  It 
requires eliminating small portions on the boundary of the study region to maintain complete 
20x20 pixel blocks.  This problem becomes more severe for larger support sizes.  Secondly, 
the assessment is dependent on the partition selected (e.g., shifting the tessellation a small 
amount will change the results).  Although it is likely that the differences resulting from such 
a shift would be small, ideally the assessment would be immune to the tessellation’s origin.  
Employing a “floating” spatial unit would resolve these problems to some extent.  In this 
approach, individual pixels would first be selected, and then a 20x20 block derived from this 
pixel becomes the sampling unit (e.g., use the sample pixel as the upper left corner of the 
20x20 pixel block).  The spatial units would thus not be fixed by a partition of the region, but 
rather would “float” within the region depending on the pixels selected.  How to stratify the 
region when using a floating plot requires investigation.  Two-phase sampling for 
stratification is a possible solution.  A large first-phase sample would be selected and each 
spatial unit in this sample would be assigned to its appropriate stratum.  A stratified 
subsample of the first-phase sample would then be chosen and the response design applied to 
this second-phase sample. 
 
The sampling designs we have proposed for the aggregated accuracy assessment of change 
can be applied to simultaneously produce a traditional, site-specific assessment of gross 
change.  The traditional assessment entails a much more data-intensive response design 
protocol to obtain the individual pixel gross change, but the sampling design protocols 
established for the net change assessment would be applicable to the traditional gross change 
accuracy analysis.  To attempt such a dual-purpose assessment would exacerbate a major 
difficulty confronting accuracy assessments of any kind - accommodating the multiple 
objectives desired of the assessment.  Adequately accomplishing many objectives requires 
implementing a more complex sampling design to achieve these goals with little added cost, 
or keeping the design simple, thereby requiring greater cost to achieve equivalent precision to 
the more complex design. 
 
 



5. Summary 
A sampling design and analysis strategy for assessing the accuracy of mapped net change was 
developed.  This strategy recognizes that many applications of the change product will 
aggregate the data to some spatial support to investigate or model relationships between net 
change and various other phenomena.  In common with one-point-in-time accuracy 
assessments, change accuracy assessments should be based on a probability sampling design 
to provide a rigorous statistical foundation.  Several modifications from the traditional 
approach to accuracy assessment were developed.  Rather than base the analysis on the 
massive change/no change error matrix, the mean absolute deviation (MAD) between map 
and true change serves as the basis for describing accuracy.  MAD is computed for several 
user-defined reporting domains for each land-cover class of interest, and the flexibility to 
tailor reporting domains to a particular user's needs is an attractive feature.  As a consequence 
of employing MAD as the primary descriptive accuracy metric, the options for defining strata 
differ from the traditional use of the map land cover classes as strata for a one-point-in-time 
assessment, or strata based on the change and no change map areas for a change accuracy 
assessment.  The key information for stratification is still garnered from the change product 
itself, but the strata definitions are complicated by the fact that the spatial units (i.e., elements 
of the population) may meet conditions for membership in several strata.  Lastly, we 
developed methods for evaluating the anticipated performance of the sampling design at the 
planning stage.  This a priori evaluation provides quantitative information as well as 
qualitative insights on the relative merits of different designs, thus allowing a more informed 
choice of which strata and sample allocations are likely to be most effective.  General 
guidelines derived from our a priori evaluation of an NLCD change product were to use a 
small number of strata and to allocate a large sample size to the large “no change” (-2.5% to 
2.5%) stratum. 
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