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1. Introduction 
Dynamic simulation models have emerged as important geographical tools to support 
geographical research (Ballas et al., 2005). Examples include micro-simulation (MS) models 
(Holm et al., 2000) and agent-based models (Gimblett et al, 2002) which usually represent 
space as continuous and cellular automata (CA) (Sirakoulis et al 2000, Situngkir 2004) whic h 
represent space as discrete (in particular, a raster).  
 
Within epidemiological studies, much data, particularly on number of cases, are acquired at 
health facilities (e.g., hospitals, clinics, dispensaries). Such data are often acquired without 
reference to geographical coordinates, and even where they are, disclosure and confidentiality 
restrictions prevent their full use. The geographical reference for a health facility is not a 
point (x, y), but a catchment defined using some two-dimensional function. Catchments are 
often not equally weighted spatially and further may overlap. Often, catchments may be 
approximated using mathematical functions such that space -time distributions of disease rate 
can be estimated from health facility data. However, such estimates are regularised 
(convolved) by the spatially varying catchments such that it is difficult to make inferences 
about the underlying processes of transmission. 
 
The emergent space-time pattern of disease in a given region depends on the parameters of 
both the disease transmission model and the spatial and social network structures in place in 
the environment in which transmission takes place. In particular, it is expected that changes 
in the parameters of the (simulation) model will lead to observable changes in the space-time 
pattern of disease. Simulation models provide an important means for evaluating the 
sensitivity of emergent patterns and their space -time character to changes in model 
parameters. 
 
The above introduction leads to two possible avenues for exploitation of the spatio-temporal 
information in emergent and possibly aggregated disease patterns: 

(i)  it is hypothesised that statistical models fitted to the space-time patterns of 
aggregated disease data can be used to infer parameters of the underlying 
disease transmission process.  

(ii) it is hypothesised that specific changes in the spatial environment and 
social network structures in which transmission occurs will provide 
explanations for variations in disease dynamics from place to place (e.g., 
town to town). 

  
Demonstration of the above hypothesised linkages would have important implications for a 
range of applications. For example, recent emergent diseases (e.g., SARS, bird flu, biological 
agents) can pose serious hazards to human health, with little known about their transmission 
characteristics. In such circumstances, it is extremely important to characterise their 
transmission properties early in an outbreak in order to plan early warning and containment 
strategies. To date, little use has been made of spatio-temporal information in this regard.  



 
If the association between particular elements of the environment and social network 
structure and disease outcomes can be quantified then it should be possible to map the 
vulnerability of settlements to specific diseases. For example, it is well-known that the 
behaviour characteristics of individuals can be modified to reduce the likelihood of disease 
transmission. However, spatial elements such as the effects of public v. state school education 
for children and settlement structure (e.g., out-of-town supermarket v. local shop) are less 
well studied. Again, such knowledge would be useful in terms of planning containment 
strategies. 
 
In this paper, we characterise the space -time pattern of disease occurrence for two common 
diseases (flu, mumps) using the (spatial) variogram computed as regular intervals in time. 
This information on spatial pattern is added to the global pattern as represented by the 
common SLIR curves. We then explore the sensitivity of spatial statistics to changes in the 
parameters of disease transmission and settlement spatial and social structures.  
 
2. Simulation Model  
To simulate infectious disease transmission, a model was created in which space is essentially 
discrete (raster) although the model is not a CA in the strict sense. The model was run with a 
diurnal time-step. The model included three separate sets of parameters: disease transmission, 
environment and population parameters.  
 
The parameters of the disease were selected based on the well-established SLIR disease 
evolution model (Figure 1). Specifically, a parameter range was established for each 
component of the SLIR model from the literature.  

  

Figure 1. SLIR model  (Chen, S., 2001) 
 
To keep the model simple in the first instance, 100 by 100 residences were distributed evenly 
over the raster space of 600 by 600 pixels. M=25 schools were distributed using a stratified (5 
by 5 cells, in this case) random sampling scheme. N companies were distributed randomly.  
 
Population parameters included both the population structure and individual behaviour. The 
structure of each household was based on published statistical data 
(http://www.statistics.gov.uk). Two age groups were established (adults, children) with 



different behaviours (Figure 2). During the day, children attended their nearest school 
according to non-overlapping catchments as represented by the Thiessen polygon structure 
(Figure 3). This structure is not dissimilar to the state secondary school system in England. 
During the day, adults attended either their nearest or a randomly selected company in equal 
numbers per household. During the evening, some interaction (transmission) between 
neighbours was allowed.  
 

 
Figure 2. Schematic representation of the social network used in the simulation model. 

 

 
Figure 3. Thiessen polygons representing school catchments. 

 
From one simulation run the entire space-time data cube was extracted for further analysis. 
 
3. Analysis  
Figure 4 shows the plot of total number of cases against day number.  

 
Figure 4. Number of infected individuals by day.  

     
The information in Figure 4 is typically all that is used to characterise diseases. However, 
further spatio-temporal information may be gleaned from geostatistical and similar analyses 
of the space-time patterns of occurrences. Figure 5 shows three variograms obtained for days 
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(a) 65, (b) 149 and (c) 308 (c.f. Figure 4). It is clear that the character of spatial variation 
changes through time in subtle ways. In particular, on day 65 there are two scales of spatial 
variation (3 pixels, 11 pixels; corresponding to local interactions between neighbours and the 
effect of school catchments. These patterns are evident in adults as well as children. On day 
149, the local pattern has been subsumed by the more dominant pattern attributable to school 
catchments, and by day 308, a larger scale trend has emerged which subsumes the pattern 
induced by the initial school catchment structure (e.g., day 149). In this paper, such changes 
are modelled using geostatistical variogram functions and the differences between such 
models as a function of changes in simulation model parameters are explored.  
 
(a)        (b)        (c) 

      
Figure 5. Variograms for days (a) 65, (b) 149 and (c) 308 showing some of the changes in 

spatial structure which occur through simulation runs.  
 
4. Conclusion 
Dynamic simulation models of infectious disease provide an important experimental 
environment for evaluating and quantifying the effects of changes in disease transmission 
probabilities as well as environmental and social parameters on space-time disease outcomes. 
In this paper, such models are used to explore the extent to which geostatistical modelling of 
the space-time pattern of disease occurrence can help in early characterisation and control of 
emerging diseases and in quantifying the effect of changing environmental and social 
parameters. 
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