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1. State of the art 
The reliable quantification of uncertainty in complex geo-computational models is an 
outstanding theoretical and practical problem within geographical information 
systems (Chiles and Delfiner, 1999; Lowell and Jaton, 1999; Zhang and Goodchild, 
2002; Couclelis, 2003; Gertner et al., 2004; Kardos et al., 2005).  A commonly used 
approach for uncertainty quantification in relatively simple geospatial models is due 
to Openshaw (1989). This approach essentially relies on error estimation techniques 
caused by individual operations, and has been used successfully in the context of map 
algebra operations (Heuvelink, 1998). Recent advances in geospatial uncertainty 
estimation include new approaches in spatial statistics (Cressie, 1993; Ripley, 2004), 
refinement of existing approaches like Kalman filtering for geospatial data (Wikle and 
Cressie, 1999), as well as new approaches in spatial data mining (Ester et al., 2000; 
Shekhar et al., 2001; Miller and Han, 2001; Shi and Wang, 2002; Hanning and 
Shuliang, 2004). However, these approaches have not been applied to, and nor have 
they been designed for, large-scale and complex computational models. Applied 
mathematicians and computer scientists have developed methods for sensitivity 
analysis and uncertainty reduction from complex computer models (e.g., Bischof et 
al., 1996; Barhen et al., 2004), however these have not been developed for or applied 
to geospatial data. Geo-scientists have developed approaches for spatial and spatio-
temporal uncertainty estimation (e.g., Ganguly, 2002; Ganguly and Bras, 2003), but 
these are applicable in the context of the specific domain.  

2. Gaps in the literature and research motivation 
This paper addresses an important gap in the geospatial sciences by proposing a new 
and generic framework for uncertainty quantification for complex geo-computational 
models. The approach adopts a systematic approach towards classification of 
geospatial operations, develops uncertainty estimation techniques for each geospatial 
operation or an entire class of such operations, accounts for uncertainty in the input 
variables, and proposes a bottom-up strategy where the uncertainties from the 
individual operations and the inputs-dependent uncertainties are combined to yield 
estimates of the overall uncertainty in a complex geo-computational model. 
Geospatial uncertainty can be expressed in various ways, and can be expected to be a 
function of auto- and cross-correlations in space or time; spatial, temporal or spatio-
temporal outliers; spatial and spatio-temporal stationarity; as well as spatial, temporal 
and attribute error structures. The approaches for problem decomposition and input-
dependent or component-based uncertainty relies on recent developments in 
disciplines like time series analysis and complex systems. 
 



The proposed approach requires a decomposition of the complex model into the 
constituent geospatial operations, as well as an understanding of how the operations 
combine to yield the final model and the results. The eventual requirement is to 
develop generic mathematical frameworks for the propagation of uncertainty in 
complex geo-computational models through the constituent geospatial operations. 
Once available, uncertainty estimates from complex geo-computational models are 
likely to influence the interpretation and application of the model results, including 
automated techniques for model calibration. In addition, estimates of uncertainty will 
impact judgmental updates of model parameters and model outputs. Uncertainty 
estimation is a first-step for risk formulations at multiple resolutions, and eventually 
impacts the entire decision-making process. 

3. New approach and research vision 
In our framework, complex, hierarchical geospatial models are viewed as being 
comprised of chains of simple operations at or between various levels of granularity 
or detail (Fig. 1). Each such operation transforms not only the data itself but also the 
uncertainty associated with the data.  As a result, even under stationary assumptions, 
uncertainty "propagates" through complex geospatial models. In the proposed 
framework it will be possible to estimate uncertainty as it "propagates" through a 
chain of geospatial operations (Fig. 2).   

 
 



Our vision is to develop uncertainty estimation methods that are comprehensive 
enough to cover most individual geospatial operations and their interactions, and 
utilize these methods to develop generic framework for uncertainty quantification in 
complex geo-computational models.  The complex uncertainty formulations may be 
analytically derivable as a function of the uncertainty of the individual operations in 
certain situations. In other situations, numerical solutions may be the only option. In 
specific cases, the solutions may have to be in the context of specific data sets, even 
though the overall approach needs to remain extensible and generic. Existing 
geographical information systems feature a very large number of geospatial 
operations and models.  For example, GRASS GIS 6.0 includes about three hundred 
different data processing and analytical commands.  However, as it was shown in 
(Albrecht, 1996), the majority of GIS operations can be reduced to a relatively small 
number of universal operations.  Albrecht (1996) lists twenty such operations.  Our 
ultimate goal is to develop methods for uncertainty estimation for all these universal 
operations. The vision described here comprises significant and challenging problems, 
and constitutes long-term research goals at the Oak Ridge National Laboratory 
(ORNL).  

4. Research focus and results 
We demonstrate the applicability of the proposed framework using a generalized 
geospatial model comprised of a chain of simple analytical operations of various 
types.  The model construction simulates a representative set of commonly used 
geospatial operations and their combinations. The focus of this specific paper is on the 
operations that result in transformation of geospatial data at multiple scales or 
resolutions, for example, on operations like spatial and spatio-temporal aggregation 
and “atomization” or disaggregation processes. The formulation, estimation and 
propagation of uncertainty resulting from the combined effect of uncertainty in the 
input variables and the spatial, temporal or attribute properties (e.g., spatial or spatio-
temporal correlations and dependence), as well as the uncertainty caused by the 
individual geospatial operations, are demonstrated. Test datasets were created using 
two major sources at ORNL: (1) real-world high-resolution population data and 
related ancillary variables and (2) global meteorological data obtained from 
observations and forecasts generated by numerical models of the weather. Established 
time series and domain-specific approaches are utilized in the formulations. 
Specifically, this paper extends and further develops ARMA-ARCH (Engle, 1982; 
Mills, 1990) type time series approaches for input dependent uncertainty in the 
context of geospatial data and extends the Bayesian Neural Network formulations 
(MacKay, 1995; Ganguly and Bras, 2003) for the estimation of the uncertainty 
resulting from a chain of simple geospatial operations.  
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