
INCREASING GEOCOMPUTATIONAL
INTEROPERABILITY: TOWARDS A STANDARD

GEOCOMPUTATION API

Yunping Liu, Mark Gahegan and James Macgill

GeoVISTA Center, Department of Geography,
Pennsylvania State University,

University Park, PA 16802, USA
Tel: +1-814-865-1666

Email: yzl120@psu.edu

BIOGRAPHY:

Yunping Liu is a Ph.D student from the Department of Geography, Pennsylvania State University. His

research interests include GeoComputation, geo-spatial data mining and knowledge dis covery, information

visualization, and exploratory data analysis.

INTRODUCTION:

In response to the increasing volume and complexity of geospatial data and problems, the primary concern

of GeoComputation is to enrich geography with a toolbox of methods to model and analyze a range of

highly complex, often non-deterministic problems (Gahegan 2000). Over the past several years, the

collection of GeoComputation tools has grown in an unbounded and diverse manner to address a wide

range of techniques and application domains from various perspectives inspired by the related fields such

as statistics, pattern recognition and artificial intelligence. While plurality and inclusiveness have been

regarded as the strength of GeoComputation, they have limited the successful deployment of

GeoComputation tools to real world problems because a number of interoperability issues are raised by the

diverse and highly specialized expertise required to understand the proposed tools and use them

appropriately and also the heterogeneity introduced into the system by their complex and diverse

functionality. Three specific problems arise. First, how do we make the tools easily accessible to end users

and third party application developers by hiding the technical and implementation details? Second, if the

targeting problem requires the integration of tools from different parties, how do we make them work

together seamlessly given that they are often developed in isolation with no thought to their eventual

integration into some larger system. Third, how do we make the tools from different parties “hot

swappable” so that users can experiment freely with a wide variety of methods without having to

continually re-engineer the supporting data and control interfaces. To address these interoperability issues,

we argue that the GeoComputation community needs a standard operating environment that embraces a

wide variety of GeoComputation data, models, methods, training and validation techniques and results.

Such a standard environment will be specified in the format of Application Programming Interface (API).

An API, a term from computer science community, refers to a set of routines, protocols, and tools for

building software applications. Currently, there is no widely agreed upon, standard API for

GeoComputation. In this paper we propose to specify a pure Java API to facilitate development of

GeoComputation-enabled applications. The Java GeoComputation (JGC) API allows java based

GeoComputation tools to be engineered to a single uniform interface that can be understood by a wide

variety of client application developers and end users. Similarly, GeoComputation applications can be

coded against a single API that is independent of the underlying host system. The JGC specification

implements much of the new Java Data Mining API (JDM, JSR73), defined by a cross-disciplinary alliance

of developers, sponsored by both Sun and Oracle and now beginning to be taken up by a number of open-

source computational projects (Hornick et al. 2004). The benefits of JGC specification to the

GeoComputation community are obvious:

1. Increases the interoperability of GeoComputation tools, facilitates the sharing of GeoComputation

tools both within and outside the GeoComputation community, and reduces the cost and potential

risk of deploying GeoComputation tools to real world applications.

2. Contributes to the development of scientific standards in GeoComputation and therefore may help

to reduce some of the reluctance among the quantitative analysis community to adopt

GeoComputational tools (Couclelis 1998).

3. Provides better support for the automation of analysis and modeling functions, such as finding the

optimal configuration parameters for a machine learning method, and helps create end-user

friendly GeoComputation technology (Openshaw 2000).

4. Promotes the sharing of GeoComputation technologies, services and information resources in our

increasingly distributed and mobile society.

CURRENT DEVELOPMENTS

The proposed JGC architecture consists of three logical components, the API, the GeoComputation Engine

(GCE), and the metadata repository (MR). The API is the end-user-visible interface that allows access to

services provided by the GCE. The API shields the GeoComputation user from details about the actual

implementation and supporting components of the GCE. The GCE provides the infrastructure that offers

GeoComputation services to users through the API defined above. The GCE can be implemented as a

server in which case it is called a GeoComputation Server. The third component is the metadata repository

(MR) that is used by the GCE to make various objects (such as datasets, configuration parameters, results)

persistent. The metadata repository stores these objects so that they can be used by the GCE to support its

operations. The metadata repository may exist as a flat file system or a relational database. The three

logical components can be implemented as one physical system or in a distributed environment. Figure 1

shows three possible architectures for a JGC implementation. A JGC implementer may add additional

utilities and management interfaces to enhance its JGC implementation, but these additional components

are not part of the JGC specification. Similarly, a JGC implementer may choose to implement a subset of

the JGC specification to support only portions relevant to his problem domain.

Figure 1. Architecture configuration options for implementing a Java GeoComputation specification

We demonstrate the utility of the JGC API to support the unsupervised and supervised classification and

clustering of geospatial data, via a suite of classification and clustering methods that includes quantiles,

equal intervals, standard deviation, k-means, k nearest neighbor, maximum likelihood, linear regression,

linear discriminant analysis and quadratic discriminant analysis . While we implemented the Data Mining

API and Data Mining Engine (DME) as one physical system, it can be easily converted to a distributed

architecture such as the client-server architecture, where the Data Mining Engine is implemented as a

dedicated server that provides Data Mining functionalities to client applications through the Data Mining

API. In a large scale distributed architecture such as the grid architecture, the Data Mining API and Data

Mining Engine can be implemented as a set of services in the Middleware Layer, which intelligently directs

user applications in the higher level Application Layer to appropriate computing, storage or other resources

in the lower level Resources Layer. These services facilitate a flexible and efficient delivery of Data

Mining functionalities depending on the computational, data or other constraints.

To highlight the benefits of using our API, we will show the ease with which our classification and

clustering tools can be accessed, configured, swapped, and connected to other supporting tools such as map

visualization. The scheme in figure 2 shows how client applications interact with the Data Mining API.

Figure 2. Interaction between user applications and the Java Data mining API

We experimented with linking a real world application developed at the GeoVISTA center, the Exploratory

Spatio-Temporal Analysis Tool (ESTAT, a collection of GeoVISTA Studio components), to our Data

Mining API. Figure 3 shows the user can access various classification tools packaged in our Data Mining

API from applications such as scatter plot and map visualization through a graphical user interface (GUI).

Figure 3. ESTAT users can access classification tools provided by the java Data Mining API

The GUI shown in figure 3 is a tentative one and needs further development work to fully exploit the

flexibility and other advantages offered by our Data Mining API. More details about the proposed JGC

specification, our case study and application demonstration will be discussed in the full paper.

REFERENCES

Couclelis, H. (1998). GeoComputation in context, in P. Longley, S. Brooks, R. McDonnell and B.
Macmillan (Eds), GeoComputation: A Primer, 17-30, Chichester: Wiley.

Gahegan, M. (2000). What is GeoComputation? A history and outline.
http://www.geocomputation.org/what.html

Hornick, M. et al. (2004). JSR73: Java Data Mining API. http://www.jcp.org/en/jsr/detail?id=73

Openshaw, S. (2000). GeoComputation research agendas and futures, in S. Openshaw and R. J. Abrahart
(Eds), GeoComputation, 382, London: Taylor & Francis.

Clicking on the color legend brings up the classification interface

