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INTRODUCTION 

 
Determining the “best” route or set of routes for linear utilities such as highways, pipelines, and power 
transmission lines, through a landscape has been the subject of much research in GIS and spatial decision 
making. Specifying an optimal corridor that connects an origin and destination is analogous to identifying a 
least-cost-path through a varying space. Extensive research efforts have been executed to solve the 
problems for many years (e.g. Tomlin, 1990; Eastman, 1989; Douglas, 1994; Berry 2004). Tomlin’s (1990) 
Spread algorithm generates an accumulated-cost-surface iteratively and delineates the weighted shortest 
path from any location to a destination by tracing back along slope lines. Eastman (1989) implemented a 
similar, but more efficient, pushbroom algorithm, which is able to produce an accumulated cost surface 
within three iterations. Many of the existing least-cost-path algorithms in GIS are derived from the 
Dijkstra’s shortest path algorithm and intend to generate a global optimal solution. 
 
However, good decisions in corridor planning usually depend not only on a global optimal solution, but 
also on how good and reasonable alternative routes are provided to help decision-makers explore the 
solution space and make compromise among many conflicting objectives. Spatial decision-making 
problems like corridor location require decision-makers to choose a “preferred” solution from a number of 
feasible alternatives in the presence of multiple criteria and diverse criterion priorities. Consensus needs to 
be achieved among stakeholders with different interests and emphases (e.g. engineering cost, 
environmental impacts, and economic and social values). Such a search for multi-criteria alternatives has 
often been neglected in the development of corridor locating models. Existing alternative generation 
techniques, including the k-shortest path algorithm (Yen, 1971; Shier, 1979), the Difference Maximization 
(Huber, 1980), the Iterative-Penalty Method (Turner, 1968), and Gateway Shortest Path Problem (Lombard 
and Church, 1993), only consider spatial arrangement as a separate objective and collapse other criteria into 
a single objective function for optimization using weighting mechanism. They are only useful to search 
alternatives that are spatially different. There is no comprehensive way in corridor locating model to 
generate a full range of feasible alternatives, which explore the entire solution space and help decision 
makers understand possible solutions as well as trade-offs among them when conflicting objectives are in 
present. Multi-objective genetic algorithms are best approaches developed so far to solve such problems.  

 
Genetic algorithms (GA) are a type of evolutionary algorithms first developed by Holland (1975) in the 
early 1970s. They are computationally simple yet robust in their search for potential solutions to 
optimization problems (Goldberg, 1989). By emulating the mechanics of natural selection and genetics, 
genetic algorithms are able to produce optimal or near optimal solutions within limited computational time, 
which makes them especially useful for optimization problems with large solution space and complex 
structure. Moreover, the power of genetic algorithms can exceed traditional single-objective optimization 
domain by incorporating more than one objective in the fitness functions. Because of the multi-objective 
nature of most real-world problem, multi-objective genetic algorithms (MOGA) becomes a popular 
research area and various MOGA methods have been recently developed for decision making problems 
when multiple objectives or criteria are involved and when the importance of different objectives are 
difficult to measure. Recent work in MOGA has concentrated on the generation of a set of promising 
solutions that are Pareto-optimal (Pareto, 1971). For Pareto-optimal solutions, it is impossible to improve 
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the value of one objective without having to give up performance of at least one other objective. Such 
solutions are usually also termed non-inferior (or non-dominated) solutions. With the introduction of 
Pareto-optimality concept and MOGA technology, decision-makers are able to generate feasible 
alternatives that can be studied in-depth to better understand the structure of their problems and the trade-
offs among criteria. There is a considerable literature indicating the effectiveness and efficiency of GA-
based multi-objective optimization techniques in decision making processes. A comprehensive technical 
summary of MOGA and related criticism could be found in Coello’s survey paper (2000).  
 
The ability of genetic algorithms to search a solution space and selectively focus on promising 
combinations of criteria makes them ideally suited to complex spatial decision problems. Many researchers 
have used genetic algorithms to solve spatial problems in different application domains. Promising 
applications of genetic algorithms in geography could include environmental analysis (Bennett et al., 
1999), site selection (Xiao, et al. 2002; Dibble and Densham, 1993; Hobbs and Goodchild, 1996), and 
spatial modeling (Openshaw, 1998; Wong et al., 1999). However, the power of genetic algorithms as 
effective alternative generators in multi-objective corridor locating has not been fully investigated.  
 
The purpose of this paper is to present a genetic algorithm based approach to the multi-objective corridor 
locating problems on raster surface datasets, with a focus on the geographical representation of corridor 
selection problems in genetic algorithms and the special design of genetic operators like crossover and 
mutation. The superiority of GA -based approaches for complex and ill-structured problems has been 
widely recognized. The MOGA corridor selection model proposed in this paper will outperform the 
conventional methods both in computation intensity and in optimal or near optimal alternative generation, 
thus demonstrating the effectiveness and efficiency of this GA -based approach to geographical analysis and 
multi-objective decision making.  
 
This paper is organized into five sections. These cover the background information about the least-cost-
path algorithms and existing approaches for corridor selection problems; details about the proposed GA -
based approach for multi-objective corridor selection; an experiment and related discussion to illustrate the 
effectiveness of the proposed approach through a comparative study with GSP method for corridor 
selection problems. The paper will conclude with some summary remarks and recommendations for further 
work in GA-based corridor locating models. 
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1. Development of Genetic Algorithm.  
There are four basic components in a GA: 1) representation of individuals, 2) design of the genetic 

operators, 3) determination of the probabilities controlling the genetic operators, and 4) determination of 
the fitness function. In this section, these issues are addressed within the framework of a new GA -based 
approach for solving the multiple objectives corridor selection problems. Furthermore, comparisons of the 
proposed algorithm with other known methods, particularly gateway shortest paths, for the same problem 
are also made. 

• Chromosome representation: In our method, a feasible corridor, represented as a chromosome, 
is a continuous sequence of integers and each integer (gene) represents the node ID through which it 
passes. A node ID refers to the location of a corresponding cell on a raster surface. For example, integer 
110 refers to the cell [2, 10] in a 100 by 100 cell region, using row ordering. Variable-length chromosomes 
(route) and their genes (nodes) have been used for encoding the problem. Every valid chromosome starts 
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with a source cell and ends with a destination cell, connecting links that stretches from the origin to the 
destination along a constrained network. A valid chromosome should not have duplicated integers in the 
sequence, which would indicate a circular path.  

• Population initialization: An appropriate size of population is initiated at the beginning of the 
procedure. Each individual is generated using a random manner. The algorithm starts with the source cell 
and randomly chooses a valid gene (cell) based on topological information (connectivity) of the network. 
This encoding process keeps selecting a valid cell that is connected with the last cell of the current 
chromosome (route), until the destination is reached. The encoding process executes repeatedly until the 
whole population is generated. When random selection mechanism results in poor performance, heuristics 
is introduced into population generation process. In heuristic method, a biased walk instead of random 
selection is used. Cells in the favorable direction from the origin to the destination have a higher probability 
to be selected as the next gene in a chromosome.  

• Selection: The selection operation of GAs is straightforward. It selects chromosomes from the 
current population for genetic reproduction, crossover, and mutation operations, according to probability 
proportional to the relative fitness of each individual. Hence, high-quality chromosomes have a better 
chance to be copied into next generation. Two chromosome selection schemes are used in this study: 
roulette wheel and tournament. Roulette wheel selection is conducted by spinning a biased roulette wheel, 
which is sized in proportion to the fitness of each chromosome. Therefore, individual with high quality 
occupies a bigger proportion of pie in the wheel and has higher probability to be selected. Tournament 
selection is performed by means of choosing non-overlapping random sets of s chromosomes (s tournament 
size) from the population and then selecting the best chromosome from each set to serve as a parent for the 
next generation. The chromosomes with the better fitness, called elitists, are copied directly into the next 
generation.  

• Crossover: The crossover operation of conventional genetic algorithm is based on an exchange 
between two chromosomes of fixed length when a bit string representation is used. In the proposed 
crossover scheme, the two chromosomes chosen for crossover can have different lengths. However, they 
must have at least one gene (cell) in common except for the origin and destination cells. When two 
chromosomes have more than two common genes, the proposed GA will randomly choose one of them as 
the crossover point. For example: 

Parent chromosome 1:  0 – 1 – 2 – 7 – 12 – 17 – 22 – 23 – 24    
Parent chromosome 2:  0 – 5 – 10 – 11 – 12 – 13 – 19 – 24   
A valid crossover point D5 exists. The result after crossover will be: 

                

 0 1 2 3 4 0 1 2 3 4 

 5 6 7 8 9 5 6 7 8 9 

 10 11 12 13 14 10 11 12 13 14 

 15 16 17 18 19 15 16 17 18 19 

 20 21 22 23 24 

 
 
 
      ?  
 

20 21 22 23 24 

 

 
Child chromosome 1:  0 – 1 – 2 – 7 – 12 – 13 – 19 – 24   
Child chromosome 2:  0 – 5 – 10 – 11 – 12 – 17 – 22 – 23 – 24    
This crossover pre-condition of commonly-shared genes between two chromosomes might be so strict 

that the performance of resultant GA suffers great degradation. If that is the case, the pre-condition can be 
loosened to allow crossover operation when two parent chromosomes have a pair of genes within the same 
neighborhood (neighboring cells). The pair of genes is included in both child chromosomes after crossover. 
For example, 

Parent chromosome 1:  0 – 1 – 2 – 8 – 14 – 19 – 24    
Parent chromosome 2:  0 – 5 – 10 – 11 – 12 – 17 – 22 – 23 – 24    
Node 12 and node 8 are in the same neighbor. The result after crossover will be: 
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 0 1 2 3 4 0 1 2 3 4 

 5 6 7 8 9 5 6 7 8 9 

 10 11 12 13 14 10 11 12 13 14 

 15 16 17 18 19 15 16 17 18 19 

 20 21 22 23 24 

 
 
 
      ?  
 

20 21 22 23 24 

 

 
Child chromosome 1:  0 – 1 – 2 – 8 – 12 – 17 – 22 – 23 – 24    
Child chromosome 2:  0 – 5 – 10 – 11 – 12 – 8 – 14 – 19 – 24    
It is possible that loops are formed in resultant routes after crossover. The crossover may generate 

infeasible chromosome that includes the same nodes twice. Hence, a repair function is needed to eliminate 
any loop in a possible route. The simplest way to deal with infeasible chromosome is detecting the loops in 
the route by searching duplicated nodes and eliminating the loop by getting rid of genes between duplicated 
nodes. 

 
• Mutation: Mutation is used to make a random change to a chromosome to increase or maintain 

population diversity, and also to avoid the premature convergence of the population. In the proposed GA, a 
gene in a parent chromosome is selected randomly as the break point. Mutation process will generate a 
partial-route starting from the mutation break point to the destination in a random manner and combine it 
with the partial-route from the origin to the mutation break point in the parent’s chromosome.  The example 
below indicates how a new chromosome is created by mutation: 

Parent chromosome:  0 – 1 – 2 – 7 – 12 – 13 – 14 – 19 – 24  
                

 0 1 2 3 4 0 1 2 3 4 

 5 6 7 8 9 5 6 7 8 9 

 10 11 12 13 14 10 11 12 13 14 

 15 16 17 18 19 15 16 17 18 19 

 20 21 22 23 24 

 
 
 
      ?  
 

20 21 22 23 24 

 

 
Randomly choose node 12 as the mutation point. The mutation operation generates a sub-route starting 
from 12 to the destination (12-17-22-23-14) and combines it to the sub-route staring from source to 
node 12 (0-1-2-7-12).  
New chromosome:  0 – 1 – 2 – 7 – 12 – 17 – 22 – 23 – 24  

 
2. Multi-criteria evaluation : 

The assignment of land suitability score is an application-oriented operation. Different applications 
may favor different sets of cost items in the evaluation of corridor configurations. Generally, two types of 
costs are associated with corridor location problems (Jong and Jha 2000): (1) location-dependent cost, 
which is sensitive to the spatial location of the corridor in region. For example, the unit cost of wetland and 
flood plain are usually assigned with relatively high values so that alternatives passing through these lands 
are prohibited in corridor planning. (2) length-dependent cost, which is a sensitive to the length of 
generated alignments. For example, the pavement cost and maintenance cost are a linear function of 
corridor length. There is a large literature in transport system dealing with cost estimates of corridor 
planning (Sadek et al. 1999, Jha and Schonfeld 2004, Jong and Jha 2000). For simplicity, only a few cost 
items are considered in this study since the main purpose of the paper is not to present a throughout real-
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world case study but to demonstrate the validity of the GA -based corridor location model based on a 
highway selection example. Geographic data from multiple sources are acquainted for cost evaluation. 
Some of those include geology, topography, land use and land cover, soil types, and flood plains. The 
suitability score assigned to each cell is scaled to a value between 0 and10, with low score value depict 
high suitability and high score values depict low suitability. 0 indicates complete compatibility and 10 
indicates high degree of conflict. Complete exclusion is possible by the assignment of an arbitrary high 
value, say 1000. Suitability scores for different criteria are specified in the following table as an example. 
Land Type Engineering cost Environment cost social costs  
Fault 1000 5 5 
Water plain 1000 5 5 
Slope  

> 20% 
8-20% 
5-8% 
< 5% 

 
1000 
10 
5 
0 

5 5 

Soil  
                 Strong rock 

     Weak rock 
     Dense sands 
     Loose sands 

 
0 
3 
5 
10 

5 5 

Land use and Land cover 
Urban & built up 
Agriculture  
Grass and shrub  
Forest 
Water 
Wetland 
Barren 

 
10 
3 
5 
7 
10 
10 
0 

 
0 
3 
5 
7 
7 
10 
0 

5 

Population Density 
> 500 person/ km2 
200-500 person/km2 
  50-200 person/km2 
< 50 person/km2 

5 5  
10 
5 
3 
0 

 
The suitability score assignment proposed above may be too simple. Another way to illustrate the 

functionality of the GA -based corridor location model is using artificial maps, assuming preliminary data 
gathering is completed and suitability surfaces are created.  

In either way, three suitability surfaces are created for study. Each represents the land suitability of 
corridor development in terms of engineering cost, environmental impacts, and social cost. The multi-
objective corridor selection problem could be stated as the determination of a route that simultaneously 
optimizes all three objectives below using Pareto non-inferior solution concept. 

• minimize Z(c) = ?  z(ci), total engineering cost of the chosen route.  
• minimize Z(e) = ?  z(ei), total environmental impact of the chosen route.  
• minimize Z(s) = ? z(si), total social costs.  
Different from single -objective GA, in which the fitness function of GAs is generally the objective 

function of the indicated optimization problems. In multi-objective scenario, the fitness function of GAs 
reflects the supreme of solution in each of the objectives. Therefore, the Pareto optimum concept is 
introduced. The fitness value of a solution is based not upon the values from objectives function, but upon 
its Pareto rank within the population. 
 

I. Experimental Results: 
The MOGA approach described above are coded in Microsoft Visual C++. The program runs on a 

Pentium IV processor PC (2600-MHz clock with 512 MB memory). In all the experiments, the parameters 
of GA are set as follows: 
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II. Conclusion and Further Research: 

This paper presents and implements a novel genetic algorithm to generate alternatives for multi-
objective corridor location problems. To the best of my knowledge, no comprehensive studies involving the 
use of genetic algorithm and multi-objective decision methods has been attempted before in the field of 
corridor selection. To my knowledge a similar algorithm has not been designed and implemented in 
commercial off-the-shelf GIS software packages, nor has a few found in academic research. Findings in 
this paper will make a contribution to GIScience based spatial analyses in general, and to intelligent 
corridor decision making in particular.  

The method proposed in this research can be extended to other applications such as finding alternative 
route for car navigation system. The methods are relatively independent of problem types for almost all 
source-destination pairs. 

 
1. Visualization: computer visualization can help decision maker to investigate the effects of some 

intangible parameter, such as unusual land and environmental characteristics that are not 
considered in optimization process. It can also be used to illustrate the performance of GA -based 
corridor location model. 

2. Constrained GA optimization. Some applications may have particular constraints in corridor 
location. For example, minimum radius constraints for road segments, as required by highway 
design standards, need to be considered in GA optimization to ensure smoothness. 

3. More specific land suitability assignment for different corridor location applications could be 
investigated in detail. 

4. dynamic network topology 
5. Distributed GA algorithms. Natural evolution is a massively parallel search process, working on 

different species at different locations simultaneously. Many works using island model have been 
done in parallel GA. A distributed GA not only can take the nature of evolution into account but 
also able can reduce the computation time significantly. GA is well suited for highly  

 


