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 Abstract 
 

Statistical models are widely used to explore relationships between 
aggregate variables in a land-use system by inductively fitting empirical 
data, for example with regression models. Seldom do researchers know 
whether, and if so how much, the relationships thus obtained reflect the 
underlying mechanisms.  This is partially due to the uncertainties in the 
system of interest, especially when the system is a complex adaptive 
system. This research addresses this issue by integrating a spatial agent-
based model (ABM) and several regression models. Driven by a set of 
hypothetical residential location rules represented by associated 
parameters, the ABM generates a series of land-use patterns on a 2-
dimentional virtual landscape over a number of time steps. For land pixels 
randomly sampled from the landscape, we recorded their emergent land-
change dynamics, and calculated each pixel’s characteristics (variables 
used in the ABM) of interest at selected time steps. Using these data, we 
applied survival analysis, logistic regression, and multivariate regression 
to discover the relationships between the land-change dynamics and the 
variables of interests. The findings suggest that these statistical models can 
capture the relationships encoded in the ABM in terms of some metrics 
(e.g., signs and significance status of regression coefficients) to varying 
degrees, and that survival analysis outperforms the other models. Our 
approach has substantial implications in calibrating and validating agent-
based models, testing plausible scientific hypothesis, conducting 
sensitivity analysis, and many other model-based scientific endeavors.  

 
1. Introduction  
 
Statistical models have long been used to test hypotheses, detect relationships, and shed 
light on a system of interest in many fields (Fotheringham et al. 2000, p.1-14). Their 
power depends on many factors, such as the reliability of the data, the theory behind the 
model (or the researcher’s conceptual understanding of the system), and specific model(s) 
that the researcher adopts. Unfortunately, much uncertainty arises from data noise (e.g., 
sampling biases, measurement errors), imperfect theory, poor understanding of the 
system, or inappropriate use of statistical models, especially when the systems under 
research are complex adaptive systems (CAS; see Axelrod and Cohen 2000, p. 32-38) 
which contain heterogeneity, non-linearity, and feedback. As such, researchers using 
statistical models find it difficult to assure that they have reached the best conclusions 
given the data available and the theory/theories at hand.  
 
In land-change science, researchers have primarily adopted Markov Chain models (e.g., 
Baltzer 2000, Brown et al. 2000), logistic function models and variants (e.g., Mertens and 
Lambin 2000, Müller and Zeller 2002), and multivariate linear regression models (e.g., 
Mertens et al. 2000) to link land-change dynamics with exogenous biophysical and/or 
socio-demographic variables. These models are helpful in many situations, but rarely has 
their appropriateness been explored in detail: given the data and hypotheses to be tested, 
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are these models the best candidates that correctly use or make full use of the information 
in the data, and give reliable results? What other models may give different or better 
insights?” Furthermore, and perhaps most importantly, given the intervening effects of 
system interactions, feedbacks, and aggregations, what limits the ability of statistical 
models to accurately reveal the agent-level behaviors that gave rise to aggregate patterns 
of land-use? A generic exploration of the appropriateness (e.g., conditions, strengths, and 
weaknesses) and utility of several common statistical models seems very important. A 
pilot methodological study of statistical models in land-change science by An and Brown 
(in review) showed that survival analysis is very powerful in detecting temporal 
variations and can disclose some potential mechanisms that may be otherwise 
unavailable—the robustness of the conclusion is, however, sacrificed by uncertainties 
existing in the data quality and underlying mechanisms. 
 
Fortunately, agent-based models (ABMs hereafter) show strong prospects in addressing 
this issue. As one type of simulation models, ABMs have an as-realistic-as-possible 
mapping of real-world entities and their relationships in terms of computer objects and 
the associated rules, and the emergent or macro- level phenomena arise from the 
interactions between these micro- level decision-making entities (agents) and/or between 
these entities and their environment(s). Generally represented through object-oriented 
programming, ABMs allows for representation of heterogeneous characteristics in agents, 
non- linear relationships and feedback among agents/objects and/or their environment(s), 
as well as cross-scale (both temporal and spatial) and cross-disciplinary integration of 
data, metrics, and models (e.g., Parker et al. 2003; An et al. 2005).  
 
Though ABMs have seen increasing applications in modeling human-environment 
interactions on real landscapes in a formal scientific context (e.g., Lim et al. 2002, An et 
al. 2005), their capacity to allow for hypothesis testing and exploratory modeling 
(sometimes for pedagogical use as well) in virtual landscapes still turns out to be one of 
their dominant strengths (e.g., Parker and Meretsky 2004, Brown et al. 2004), and some 
researchers even argue that this might be the only role of ABMs (Epstein 1999). 
Whatever the arguments, ABMs can undoubtedly provide researchers a platform that (1) 
encapsulates a small set of relevant agents and assumed (maybe highly simplified) 
relationships (rules), with other entities or relationships of no interests screened out, (2) 
performs simulation experiments under different model parameters corresponding to 
varying hypothetical conditions, and (3) tests hypotheses that are otherwise difficult to 
test. This utility of ABMs has found wide application in many disciplines such as 
economics (e.g., Arthur 1999), political science (e.g., Epstein 2002, Kollman et al. 2003, 
p. 1-12), and complexity theory (e.g., Axelrod and Cohen 2000). 
 
In the research presented in this paper, we used ABMs to rule out the uncertainties arising 
from data quality and/or those usually (if not always) unknown underlying mechanisms, 
and explore the utility and conditions of statistical models in land-change science. 
Therefore, we pursued the following objectives: (1) establish a set of simplified 
hypothetical mechanisms that drive the land-use changes in an ABM; (2) use different 
statistical models to analyze the data obtained from such an ABM; and (3) explore the 
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situations in which these statistical methods reflect the true/hypothetical mechanisms or 
produce significant bias.  

 
 
2. Methods  
  
2.1 The SOME Model 
 
Our project on Simulating Land-Use Change and Ecological Effects (SLUCE; see 
http://www.cscs.umich.edu/sluce) at the urban-rural fringe developed an agent-based 
spatial model called SOME (SLUCE’s Original Model for Exploration), which studies 
how individual residential location decisions interact with environmental factors (Rand et 
al. 2003; Brown et al. 2005). Two types of agents, homebuyers and service centers, enter 
a virtual landscape of n × n lattice based on a set of assumptive, but empirically and 
theoretically reasonable, rules. The landscape has a set of characteristics upon which the 
homebuyers base their residence decisions, such as aesthetic quality, distance to service 
centers, and nearby density. The utility of each potential location (x, y) is calculated by 
this equation: 
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Where ux,y(t) is the utility calculated at location (x, y) at time t, γi is the ideal value for 
factor i (i = 1, 2,…, n; we assume that all individual homebuyers have the same ideal 
value for one specific factor over time), and zi,x,y (t) is the observed value for factor i at 
location (x, y) at time t. Both γi and zi,x,y (t) are standardized to be between 0 and 1. αi is 
the preference weight that the homebuyer places on factor i (time- invariant for the time 
being). To simplify the utility calculation and modeling process, we assume that all the 
γi’s are equal to 1, and only examine the factors of aesthetic quality and distance to 
service centers. According to this assumption and some relevant processes in the SOME 
model, equation (1) reduces to: 
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where Ax,y (standardized between 0 and 1) and SCx,y(t) are the  observed values of 
aesthetic quality  and  distance to service center (at time t) at location (x, y), and αA and 
αSC  are the preference weights placed on these two variables. The SOME model can 
choose the values of these two parameters based on some common distributions such as 
normal and uniform distributions. To keep the α’s meaningful in equation (2), negative 
values and values greater than 1 that arise from the sampling process are replaced with 
positive values re-sampled from the same distribution. 
 
When the model is started, a service center is placed at the geometric center of the virtual 
landscape. At each time step, a total of n (n = 10 in our case) homebuyers enter into the 
landscape. Each homebuyer randomly samples a total of m (m = 10 in our case) 
unoccupied places (cells), and the one that provides the highest utility value (calculated 
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from equation (2) based on the observed values at (x, y), i.e, A(x,y) and SC(x,y)(t)) will be 
the choice of that homebuyer. As the process continues, a new service center will be 
added to the landscape as soon as the existing service serves more than 100 homeowners; 
the location of the service center is near the location chosen by the last homebuyer. This 
process continues until a certain proportion of the landscape is occupied or a time 
specified by the researcher has been reached. 
 
2.2 Experiment Design 
 
The SOME model served as a platform to perform experiments on a virtual landscape. 
We created a 121 by 121 random map of aesthetic quality with spatial autocorrelation in 
consideration (Figure 1), each aesthetic value ranging from 0 to 8191 (integers were used 
to ease computational complexity, but were standardized to be between 0 and 1 before 
calculating the utility in equation (2) or entering regression analysis later). The report 
frequency was 20 steps (one time-unit; each step could be understood as one year), and 
we reported the simulation results at steps 20, 40, 60, 80, and 100 (or at time-units 1, 2, 3, 
4, and 5), and output them as ASCII files for statistical analysis and/or spatial analysis in 
ArcGIS. 

 
Figure 1. The 121×121 aesthetic quality map generated in ArcGIS with spatial 
autocorrelation considered. The light to dark areas represent low to high aesthetic 

values on the virtual landscape. 
 
Our experiments focused on different levels of preferences towards the two 
environmental factors, the aesthetic quality and the distance to service center (for similar 
explorations of the effect of diversity in preferences, see Rand et al.2002).  First, we 
chose average preferences for aesthetic quality and distance to service centers (αA and 
αSC, respectively) to be 0 and 1, respectively, with variable levels of variance increasing 
from 0.0 to 1.0, representing a situation/hypothesis that the homebuyers only consider 
distance to service centers with aesthetic quality unaccounted—but as the variance rises, 
this trend may be blurred. Experiments #1-4 were designed in this regard (Table 1). Next, 
we switched values of αA and αSC (αA =1 and αSC =0) and still keep their variances 
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increasing from 0 to 1 (Experiments #5-8 in Table 1), reflecting our hypothesis that if 
aesthetic quality is the only factor in the decision, the emergent spatial trajectory would 
vary and lead to quite different regression results. Aesthetic quality (represented as a 
random map with spatial autocorrelation) is free of temporal variations (we keep it so, 
though the SOME model has an option to change the aesthetic quality as new 
developments come in), while distance to service centers is time-dependent (addition of 
new service centers may change the distances for some cells) and path-dependent (i.e., 
the location of upcoming service center depends upon the distribution of current 
residence and service centers, which in turn depend upon locations of earlier ones; all 
these distributions are more or less related to the first service center located at the center 
of the virtual landscape).  Lastly, we were interested in the scenarios where variances 
remain zero, but the mean preferences (αA and αSC) change. These experiments were 
complementary to the above two sets of experiments: aesthetic quality values of the 
landscape are random, while the distances to service centers are both time-dependent and 
path-dependent. Therefore, they may behave differently in the regression analysis even if 
the preferences to them rise at the same rate and are equal. 
 

Table 1. Model parameter specification 

αA αSC  

Experiment # Mean Variance Mean Variance 

1 0.00 0.00 

2 0.25 0.25 

3 0.50 0.50 

4 

 

 

0 
1.00 

 

 

1 

 
1.00 

5 0.00 0.00 

6 0.25 0.25 

7 0.50 0.50 

8 

 

 

1 
1.00 

 

 

0 
1.00 

9 0.25 0.75 

10 0.50 0.50 

11 0.75 

 

0 

0.25 

 

0 

 
 
The parameter settings (Table 1), together with the processes described above, serve as 
the hypothetical mechanisms that drive the land-use dynamics, and the resultant emergent 
land-use patterns were sampled and analyzed using statistical models. 
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2.3 Sampling and data collection 
 
To avoid the influences of spatial autocorrelation on regression and to speed up the 
computation, we sampled a total of 2175 cells (approximately 15% of all the cells in the 
virtual landscape) for each of the experiments in Table 1. For each of the sampled cells, 
we calculated the associated value of the aesthetic quality (homogeneous over time), and 
the distances to the nearest service center at each of the five time-units. Finally, we 
recorded the land-use trajectory for each cell based on the output pattern at each of these 
five time-units (see Figure 2): 0 for non-development, 1 for residential land-use, and 2 for 
service center. In our research, we were primarily interested in the drivers of the 
transitions from non-development to residential land-use, so we do not model the 
transitions from non-development to service center—actually, the placement of service 
center in the SOME model only depends on the needs from the homebuyers (each 100 
residential units need a service center) rather than environmental factors.  
 

 
Figure 2. Snapshots of development dynamics in five time steps when αa = 0, αSC =1, 

and variance = 0 (Experiment 1 in Table 1): (a) step 20, (b) step 40, (c) step 60, (d) 
step 80, and (e) step 100. Green (grey if printed in b/w) is for non-development, 

yellow (white if printed in b/w) for residential land-use, and red (black if printed in 
b/w) for service center. 

 
The outcome development trajectories take the form of, e.g., 0-0-0-0-0 (the cell remains 
undeveloped until the end of time-unit 5, or step 100), 0-0-1-1-1 (the cell gets developed 
between time-units 2 and 3, or steps 40 and 60), or 1-1-1-1-1 (the cell gets developed 

(a) (b) 

(c) (d) (e) 
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between the start-up time and step 20, or between 0 and time-unit 1). To facilitate the 
OLS multivariate regression, we assigned its survival times (the length of time that the 
cell remains undeveloped) as t = 5.5, 2.5, and 0.5 time-unit. Note: assigning the 0-0-0-0-0 
type (the cell remains undeveloped until the end of step 100) a fixed survival time (5.5 
time-units, or 110 steps here) is required in OLS regressions, but may cause bias (that cell 
may survive longer than 5.5 time-units or 110 steps). This is one of the strengths of 
survival analysis, which will be introduced later. 
 

 
Figure 3. Snapshots of development dynamics on the landscape in five time steps when 

αa = 1, αSC =0, and variance = 0 (Experiment 5 in Table 1): (a) step 20, (b) step 40, 
(c) step 60, (d) step 80, and (e) step 100. See Figure 2 for the legend. 

 
2.4 Statistical Analysis 
 
Using the data thus generated, we conducted statistical analysis using three models, and 
recorded the estimated coefficients, χ2, p value, and model- fit indices (- 2 log likelihood 
or R2). The three models include a survival analysis model, a logistic model, and a 
regular ordinary least square (OLS) multivariate model. 
 
Survival Analysis is a collection of statistical methods designed to handle the occurrence 
and timing of events, which originated from the study of deaths in medicine, public 
health, and epidemiology (thus the name survival analysis; Allison 1995; Klein and 
Moeschberger 1997). Powerful in handling data censoring (if the event is known to have 

(a) (b)

(c) (d) (e) 



 9

occurred in an interval (-∞, t2), (t1, t2), or (t1, ∞), we say that the survival time is left, 
interval, and right censored, respectively) and time-dependent covariates (explanatory 
variables taking varying values over time), it has been a more powerful tool for 
explaining time-varying phenomena (Klein and Moeschberger 1997; Cantor 2002). We 
regressed the logarithm of hazards against a linear combination of the two explanatory 
variables, aesthetic quality and distance to service center: 
 
                                h(x,y)(t) = h0(t) exp (βAA(x,y) + βSCSC(x,y)(t))                                     (3) 

 
 where h(x,y)(t) is the hazard that cell (x, y) is developed to residence at time t (not directly 
observed, but derived indirectly; see Allison 1995 for more details), A(x, y) and SC(x,y)(t) 
are the aesthetic value and distance to service center at location (x, y) at time t (A(x,y) is 
time invariant, though). Due to a significant contribution called “partial likelihood 
function” by Cox (1975), h0(t) can be eliminated during the estimation of the coefficients 
β’s, which explains the fact that the estimated results do not contain an intercept term.  
For details about survival analysis and its substantive potential in land change science, 
see An and Brown (in review). 
 
Logistic modeling is quite popular in land-change science (thus we do not provide an 
introduction here), and we used it as one alternative to capture the mechanisms as 
specified earlier in this article.  The logistic model is estimated as below: 
 
                Log (P(x,y)(t)/(1-P(x,y)(t))) = η + βAA(x,y) + βSCSC(x,y)(t)                          (4) 
 
Where P(x,y)(t) is the probability that location (x,y) under consideration is developed to 
residence at time t (thus each location has five records corresponding to the five time-
units in the regression model),  η is an intercept term (we do not use α because it is used 
in the utility equation above), and A(x,y) and SC(x,y) are the aesthetic value and distance to 
service center at location (x,y). To account for the possible effects of time-dependent 
variables (distance to service center in our case), we spread out the data into the 
“location-time” format in estimating model (4), i.e., each sampled cell has five records 
corresponding to its five time steps. To address the issue of possible correlation between 
the five records of one cell, we treated them as records in one cluster using the 
surveylogistic procedure in SAS as suggested in An and Brown (in review).   
 
OLS multivariate regression is one of the most-often used methods in land-change 
science and many other disciplines. We regressed the survival time (s_time) against the 
two explanatory variables A(x,y) and SC(x,y): 
 
                       s_time = η + βAA(x,y) + βSCSC(x,y) (t)                                               (5) 
 
where SC(x,y) (t) is the distance to service center prior to the development, and other 
variables are similarly defined as in the logistic model. 
 
3. Results 
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In general, the regression coefficients had the expected signs when they were significant 
(we chose p < 0.05 as the default significance level): aesthetic quality had a positive sign 
from survival analysis and logistic regression for Experiment 5 (Table 2), implying the 
larger the aesthetic quality, the higher the chance to be developed, which reflected what 
exists in the SOME model in Equation (2). In the OLS model, aesthetic quality had a 
negative sign because the response variable is the survival time, or the time that the cell 
remains undeveloped, implying that the larger the aesthetic quality, the shorter the 
survival time, which translates to higher probability or hazard of being developed. 
Distance to service center manifests exact the opposite signs compared to aesthetic 
quality in the models because it is the invert of distance to service center that is used to 
compute the utility function (Equation (2)).  Similarly, in Experiment 1 the 
negative/positive signs on distance to service centers/aesthetic quality from survival 
analysis and logistic regression, and positive/negative sign for OLS regression, were 
consistent with the higher/lower likelihood of development closer to service centers/in 
places with higher aesthetic quality that was built into this model. 
 

Table 2. Regression results in two extreme situations* 
 
 Methods -2log L  R2 β’s Estimates  χ2(t value 

in OLS) 
p-value 

βA -0.3909 0.29 0.676 Survival 
analysis 

911.81 0.20 
βSC -14.1199 215.18 0.000 
βA -0.0860 0.01 0.9279 Logistic 

regression 
2049.78 0.11 

βSC -14.3151 226.45 <0.0001 
βA -0.0811 -0.97 0.3322 

 
Experiment 

1 
αA=0,αSC=1 

(Var=0) OLS 
regression 

 0.06 
βSC 0.6231 11.93 <0.0001 
βA 12.9838 434.55 <0.0001 Survival 

analysis 
1072.66 0.19 

βSC -0.6129 1.91 0.1671 
βA 16.4833 252.02 <0.0001 Logistic 

regression 
2263.24 0.13 

βSC -1.9216 16.19 <0.0001 
βA -1.8046 -19.09 <0.0001 

 
Experiment 

5 
αA=1,αSC=0 

(Var=0) OLS 
regression 

 0.16 
βSC -0.4744 -6.40 <0.0001 

 
Note: the R2 for survival analysis and logistic regression is calculated by R2 = 1- 
exp((2Lp-2Lo)/N), where Lp and Lo are the log likelihood of the full model (with 

covariates) and the null model (without covariates), and N is the number of observations 
used in the model. This is called “generalized R2”, which cannot be explained as the 

proportion of variations explained by the covariates (Allison 1995). 
 

 
3.1 Comparison between methods  
 
When the two preference weights (αA and αSC) take non-zero values with zero variances, 
all the three statistical models gave significant coefficients (Figure 5(c)).  Under the 



 11

extreme assumption that preference over distance to service center was the only factor 
affecting the home choice decision (Experiment 1: αA = 0, αSC = 1; var = 0), all the three 
models captured this assumption by showing insignificant coefficients of aesthetic quality 
(p = 0.676, 0.9279, and 0.3322), and significant coefficients of distance to service center 
(p <0.0001 for all; Table 2).  When the preference weights were opposite (Experiment 5: 
αA = 1, αSC = 0), only the survival model had a correct insignificant coefficient for 
distance to service center (p = 0.1671), and both logistic and OLS regressions masked 
this trend by giving significant coefficients (p < 0.0001 for both; Table 2). In addition, 
the survival analysis gave the highest R2 (for cautions of using R2 to compare models, see 
An and Brown in review). 
 
3.2 Change of regression coefficients 
 
The coefficients revealed by the statistical models in response to changes in variances of 
the agent preferences depended on the weights of preferences over the two variables 
(Figure 4). Since the coefficient signs only reflect the directions of the effects, we plotted 
|βSC| to display how the magnitudes of βSC change in response to changes in the 
controlled variables. Later, we focus our discussion on the coefficients for aesthetic 
quality (βA) and the absolute values of the coefficients for distance to service center 
(|βSC|), and bold solid lines are used in Figure 4. 
 

 
Figure 4. Regression coefficients (betas) curves under different conditions: (a) αA =0 and 

αSC =1; (b) αA =1 and αSC =0; and (c) variance =0. 
 

When all the preference was placed on distance to service center (i.e., Experiments 1-4: 
αA = 0, αSC = 1), the rise in variance resulted in an increasing effect of aesthetic quality 

(a)

(b) (c)

-20

-10

0

10

20

30

0 0.25 0.5 0.75 1

Variance

C
oe

ff
ic

ie
nt

betaA betaSC |betaSC|

-20

-10

0

10

20

30

0 0.25 0.5 0.75 1

aA

C
oe

ff
ic

ie
nt

betaA betaSC |betaSC|

-20

-10

0

10

20

30

0 0.25 0.5 0.75 1

Variance

C
oe

ff
ic

ie
nt

betaA betaSC |betaSC|



 12

and decreasing effects of distance to service center. At some point (approximately 
variance = 0.5), these trends leveled off and then went to the opposite direction (Figure 4 
(a)). However, when all the preference was placed on aesthetic quality (i.e., Experiments 
5-8: αA = 1, αSC = 0), the rise in variance led to monotonously decreasing effect of 
aesthetic quality and monotonously increasing effects of distance to service center. At 
some point (approximately variance = 0.25), these two curves intersected (Figure 4 (b)). 
 
On the other hand, when variance was zero, the rise in the preference weight on aesthetic 
value αa (corresponding to a reduction in the preference weight on distance to service 
center αSC) gave rise to an increasing coefficient for aesthetic quality, and a decreasing 
coefficient for distance to service center, and these two curves intersect at αa = 0.7 
(Figure 4(c)). 

 
Figure 5. The significance levels (χ2) of the regression coefficients for aesthetic quality 

and distance to service center under different conditions: (a) αA =0 and αSC =1; (b) αA 
=1 and αSC =0; and (c) variance =0. 

 
3.3 Change of coefficient significance 
 
When the distance to service center was the sole consideration in making residence 
decisions (Experiments 1-4: αa = 0, αSC = 1), the rise in variance resulted in a 
monotonous decrease in the significance level (measured by χ2) of the service center 
coefficient (βSC), and an inverted U-shaped significance curve for the aesthetic quality 
coefficient with a summit at approximately 0.5 (Figure 5(a)). When aesthetic quality 
played the only role (Experiments 5-8: αa = 1, αSC =0), the rise in variance resulted in a 
decline in the significance level of its coefficient, but an increasing significance level for 
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distance to service center (Figure 5(b)). When variance was zero, the significance level 
rose as the mean of the associated preference weights increased (Figure 5(c)). 
 
4. Discussion 
 
Data in land-change science are often characterized by data censoring and time-
dependent variables. Fortunately, we have shown in this paper that survival analysis, 
among the three methods, can provide us with the capacity to analyze such data and 
detect the assumed mechanisms. This finding is consistent with what An and Brown (in 
review) found. This capacity still varied from situation to situation, however. For 
instance, the regression coefficients could largely reflect the mechanisms we assumed in 
the agent-based model in terms of the sign and significance when variance was zero. 
When variances were introduced, survival analysis gave coefficients for aesthetic quality 
with significance (χ2 >7, see Figure 5 (a)), even if the average preference weight was 
zero, and coefficients for distance to service center with even higher significance (χ2 
>150, see Figure 5 (b)) when the preference weight was zero. This “malfunction” can be 
understood from the sampling of the associated weights: when the va riance is positive, 
the resultant α is always positive due to the “resample-till-positive” process (see the 
section “The SOME Model”), thus the resultant average weight α is a positive number 
rather than zero. In this sense, the significant coefficients still reflect what is really in the 
SOME model. 
 
The asymmetry between aesthetic quality and distance to service center deserves 
attention. When αa = 0 and αSC =1, the magnitude of the coefficient for distance to 
service center (>11.00) is much larger than that of the coefficient for aesthetic quality 
(<4; Figure 4 (a)); when αa = 1 and αSC =0, the magnitudes of these two coefficients are 
closer, ranging from 0.6 to 11.1 (Figure 4 (b)). This asymmetry manifests as well in terms 
of the χ2 index: When aesthetic quality is ignored or less important (αa = 0 and αSC =1), 
the χ2 values for aesthetic quality are below 31; when distance to service center is 
ignored or less important (αa = 1 and αSC = 0), the χ2 values for distance to service 
center could still be as high as 172 (Figure 5 (b)). All these asymmetrical characteristics 
may have a single cause: the path-dependence in locating service centers in the SOME 
model. The service center, at the time of entering the landscape, is always placed near the 
residence, no matter how much emphasis the homebuyer places on this factor while 
choosing his/her residence location. Even when αSC = 0, the service center and residence 
locations are still not independent, which can be seen in Figure 3: whenever there is a 
service center (black dot), there are residences around (white dots); but the reverse is not 
always true because the homebuyers under this situation did not take service centers into 
consideration when choosing residence locations. 
 
We used the signs, the significance indices (χ2 in particular—p-value is not reported by 
many software packages such as SAS when small enough), and the relative magnitudes 
of regression coefficients to evaluate the capacity of regression analysis to capture the 
“real” mechanisms, and these metrics turned out to be meaningful and useful. We expect, 
however, when the utility function in the ABM or the regression model is calibrated to 
conform to some protocol (e.g, both use the same function such as equation (3)), the 



 14

absolute magnitudes of the coefficients should make more sense and help us detect the 
information contained in the regression model.    
 
The statistical models do not have a very good fit, indicated by the R2 ranging from 
approximately 0.06 to 0.20 (though a generalized R2 over 0.05 is considered acceptable in 
disciplines such as medical science and sociology when real data are used; see Allison 
1995, An and Brown in review), which can be, at least partly, explained by the 
stochasticity existing in the SOME model. First, each time a homebuyer comes to the 
landscape, he/she can only evaluate ten randomly selected cells and choose the cell with 
the highest utility. On the one hand, the ten selected cells may have excluded some cells 
that are more suitable for residence in terms of our criteria, e.g., having a shorter distance 
to an existing service center or a higher aesthetic quality. On the other hand, the choice of 
the ten candidates, in real situations, may still depend on some variables (e.g., availability 
of informative realtors) that we do not know and thus have to be excluded in our SOME 
model. In this sense, our agent-based model is not a fully mechanistic model, but a 
combination of mechanistic and stochastic model, which is reasonable in the real 
situations because the homebuyers may not have complete information, and they may not 
be fully aware of their decision rules (often complex and difficult to formalize). So, we 
still cannot screen out all the uncertainties as we mentioned in the introduction. Second, 
the utility function (Equation (2)) is only one of several possible forms. For instance, the 
SOME model can also use an additive utility function: 
\ 

                 2/))(/11(2/)1()( ,,, tSCAtu yxSCyxAyx −+−= αα              (6) 
 
To make the regression coefficients able to accurately reflect parameters that we assumed 
in the ABM, it would be ideal to choose the same equations (at least very close) in both 
the utility function and regression function. For instance, we can modify Equation (6) to 
be: 

        ]2/))(/11(2/)1(exp[)( ,,, tSCAtu yxSCyxAyx −+−= αα           (7) 
  
At the same time, while conducting the survival analysis, rather then regressing against 
A(x,y) and SC(x,y)(t) directly, we can regress against 1-A(x,y) and 1-1/SC(x,y)(t), then the 
hazard model for regression will change from Equation (3) to:  
 
                         h(x,y)(t) = h0(t) exp [βA(1-A(x,y))+ βSC(1-1/SC(x,y)(t))]                               (8) 
 
thus the α’s in Equation (7) and β’s estimated from Equation (8) will be totally 
comparable because they should be proportional (if h0(t) is a constant, which is 
commonly accepted in many survival analysis studies). The only assumption is that 
higher utility lead to higher hazards of development, which is quite reasonable. Doing so 
we can interpret the regression coefficients (β’s) as the preference weights or a 
multiplication of the weights with some constants. 
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In the future, efforts should be directed towards the following issues based on the above 
discussion. First, we may vary the number of cells that each homebuyer can evaluate so 
that we can reduce or increase the uncertainty, and test how different models can capture 
the mechanisms assumed in the ABM model. Second, we may try different utility forms 
in the ABM, especially those discussed above. Third, in light of the fact that the location 
rules for service centers cause path-dependence, we can place more than one initial 
service center (say, each quadrant has one) or place the service center in different 
locations on the landscape, and explore if, and how, the service center(s) would affect 
development patterns over time and the associated regression results based on these 
patterns. We could also allow the service centers to use a different placement mechanism.  
Last, it is promising to test whether statistical models (especially survival analysis) can 
detect dynamic preference weights (i.e., α = f (t), or α = f (some covariates)). 
 
The significance of this research goes beyond the above-mentioned perspectives, 
contributing to the methodology of land-change science. As mentioned in the 
introduction,  ABMs can take a set of model rules on a virtual landscape, and thus can not 
only screen out some variables and relationships of no interests, but also relieve the 
researcher of the burden of collecting reliable data. For instance, to study the effects of 
censored data on regression results, we need both censored data (as we showed above: we 
were supposed to know only the status of each cell at a fixed interval) and non-censored 
data (i.e., we knew the exact time that the specific cell was developed), and then to 
compare what bias will come out due to different levels of data uncertainty. The SOME 
model can easily generate such information and facilitate further research.  
 
Furthermore, the integration of agent-based modeling and regression analysis (survival 
analysis, in particular) can be used for a variety of other purposes: (1) Verify an ABM 
model. If the regression coefficients based on emergent outcomes are inconsistent with 
some rules in the ABM, for instance, there may be bugs in the ABM. (2) Use regression 
results to confirm plausible hypotheses. The researcher can fit his/her hypothetical 
relationships into an ABM, analyze the emergent outcomes using regressions, and decide 
whether the regression results agree with our theory, experience, or experts’ opinion. If 
not, these hypothetical relationships may be questionable.  (3) Conduct relationship-, 
heterogeneity- or scale-sensitivity analysis. If one relationship is removed from an 
existing ABM, one type of agents has assumed homogenous characteristics for some 
variable(s), one type of agents is scaled up to a higher level of agents, but the regression 
results based on the emergent data remain largely unchanged, then we may conclude that 
this relationship, the heterogeneity in this variable, or the low scale of agents in the ABM 
are insignificant and can be neglected. 
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