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Abstract 
Cellular automata (CA) are discrete systems used for modelling complex spatial 
dynamic phenomena. The discrete nature of CA enables integration with raster-
based geospatial datasets in geographic information systems (GIS), and also can 
be beneficial when modelling complex ecological processes that evolve over 
time. However, when modelling forest insect infestations it is difficult to use 
discrete cell states to represent, for example, the concept of susceptibility of a 
tree to insect attack. The use of binary or probabilistic approaches for cell states 
definition is not appropriate because insect disturbances are driven by numerous 
components of insect-tree relationships that are difficult to understand. 
Furthermore, uncertain transition zones exist between forest stands of different 
sizes and different species where a discrete definition of a cell cannot be 
provided. The objective of this study was to integrate fuzzy set theory with GIS-
based CA modelling to model tree mortality patterns caused by insect 
infestation, and to explore the sensitivity of the model to different spatial 
properties. This study focused on a case study of lodgepole pine, Pinus 
contorta, mortality patterns caused by infestations of mountain pine beetle 
(MPB), Dendroctonus ponderosae Hopkins. The use of fuzzy set theory 
addresses the issue of inherent uncertainty of the geospatial data used for studies 
of forest infestations, while a test of model sensitivity exp lores the influence of 
the spatial properties of a fuzzy-constrained CA.  

 
 
1. Introduction 
Cellular automata (CA) are spatial dynamic models used for modelling complex systems where 
local interactions lead to global patterns (White and Engelen 2000). The discrete nature of CA 
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facilitates the integration with raster-based information in geographic information systems (GIS). 
CA modelling in GIS has proven especially successful in simulations of urban growth and land 
use change (White et al. 1993, Xie and Batty 1997, Clarke  and Gaydos 1998, Batty et al. 1994, 
White and Engelen 2000), where discrete landforms occupy various spaces over time. However, 
the discreteness of CA also hinders its use with complex ecological processes where cell states 
cannot adequately represent the ecological entities. Such is the case with modelling forest insect 
infestations where each cell represents the susceptibility of a tree to attack. Two main problems 
exist that prevent representing a cell as discrete.  

The first problem concerns defining a tree’s susceptibility to insect attack. It is difficult to use 
contemporary approaches to this problem, such as defining a tree as either susceptible or not 
susceptible or deriving the probability of a tree becoming attacked. This is due to the fact that 
insect disturbances are driven by numerous components of insect-tree relationships that are 
difficult to understand. Appreciating this relationship is further complicated by the presence of 
numerous climatic variables such as temperature, wind, humidity and precipitation, which, 
coupled with the geographic variation of a species’ life cycle, produce varying results and 
incomplete or vague knowledge on insect behaviour (Carroll and Safranyik 2004). Therefore, 
considering a raster-based representation or a forest landscape, significant uncertainty is present 
when attempting to assign a discrete binary value or probability value for describing a tree’s 
susceptibility to attack.  

The second problem is the inherent uncertainty in classifying raster-based data of forest 
landscapes in a GIS. Processes such as insect infestations operate at refined spatial and temporal 
scales. As forests are continuously changing over space and time, the value given to a cell 
through classification procedures only represents that location for the moment in time when the 
data was acquired. An apparent consequence of the characteristics of forest raster-based data is 
that the borders between forest stands cannot be defined with certainty (Lowell 1996). Therefore, 
uncertain transition zones exist between forest stands of different sizes and different species 
where a discrete definition of a cell cannot be provided. Furthermore, the often-inappropriate 
spatial and temporal resolutions of commonly used geospatial data hamper the ability to study 
and understand the forest infestation process. It is difficult to determine attack patterns with 
large-scale images collected over a short and inappropriate time periods of an infestation 
phenomenon that occurs at very small scale (e.g. tree-size) but have consequences on the large 
forest environments. 
 
The objective of this study was to integrate fuzzy set theory with GIS-based CA modelling to 
simulate tree mortality patterns caused by insect infestation, and to explore the sensitivity of the 
model to different spatial properties. More particularly, this study used lodgepole pine, Pinus 
contorta, mortality patterns caused by infestations of mountain pine beetle (MPB), Dendroctonus 
ponderosae Hopkins, as an example. Fuzzy sets have successfully been applied to urban growth 
and land use change CA models (Wu 1998, Liu and Phinn 2001), however it is not yet fully 
elaborated in the research literature related to the modeling dynamic ecological processes. The 
use of fuzzy theory addresses the issue of inherent uncertainty of the geospatial data used for 
studies of forest infestations. In addition, the focus was in applying several tests of model 
sensitivity to explore the influence of the spatial properties of a fuzzy-constrained CA.  
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2. Background 
 
2.1 Fuzzy-Constrained Cellular Automata 
White and Engelen (2000) explain CA as five components: (1) a grid of cells that represents a 
landscape; (2) a finite number of discrete states that represents objects in the landscape, where 
each cell is represented by a single state; (3) a local area called the neighbourhood where 
information is gathered to determine the state of each cell at the next instance in time; (4) 
transition rules that govern the nature of state transition; (5) a number of iterations for which the 
model is performed. The premise behind CA is that the state of each cell is determined at each 
iteration by the states of the cells in the neighbourhood and the transition rules that define the 
influence of those cells.  
 
An appropriate CA-based model of insect-induced tree mortality requires a forest landscape 
represented by a grid of cells where each cell represents a single susceptible tree in order to 
simulate the local insect-tree interaction. A susceptible tree is more likely to be attacked if there 
are a significant number of trees in the neighbourhood that are already attacked because the 
insects in those trees or their offspring will soon be looking for a new tree to infest. Therefore, 
discrete cells states would represent ‘susceptible’ or ‘non-susceptible’ trees that change to an 
‘attacked’ tree over time based on the transition rules that define how many insects are required 
in order for a susceptible tree to become attacked. While discrete cell states are commonly 
employed in CA models of ecological processes where states represent the presence or absence 
of a species (Jeltsch et al. 1996, Wilson and Nisbet 1997, Grist 1999) or the presence of one 
species versus another (Dytham 1995, Baltzer et al. 1998, Chen et al. 2002), significant difficulty 
exists with representing the susceptibility of trees due to the two problems described above.   
 
Fuzzy set theory (Zadeh 1965) can be used in cases where uncertainty is present in defining cell 
states by utilizing expert knowledge on the nature of the complex system under investigation 
(Robinson 1988). Fuzzy set theory explains that the membership function of an element x 
belonging to a fuzzy set A is represented by µA :  U  ?  [ ]1,0 , where U is the universal set of x. 
This explains that the function associates a graded membership with each point x in U. Fuzzy 
sets can be used for defining tree susceptibility by utilizing expert knowledge on the relationship 
between attacking insects and susceptible trees in order to develop membership functions. 
Components of this relationship could include the biological characteristics of a tree that are 
preferred by the insect, or the dispersal patterns of the insect from one tree to another. The 
membership functions would provide a value between 0 and 1 explaining the susceptibility of a 
tree based on the nature of these components.      
 
With regards to GIS research, the concepts of fuzzy sets have been employed for defining the 
spatial and attribute characteristics of geographic objects (Burrough 1992, Wang and Hall 1996), 
soil classes (Burrough et al. 1992), temporal interpolation (Dragicevic and Marceau 2000), and 
image classification (Wang 1990, Zhang and Foody 1998) among others.  Fuzzy sets have been 
used for forest research to deal with issues surrounding digitizing objects from thematic maps 
(Lowell and Gold 1995), identifying forest types (Brown 1998) and identifying individual trees 
(Brandtberg 2002).  
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2.2 CA Model Sensitivity  
CA models produce results that are influenced by spatial properties such as the size of the 
neighbourhood and study area. However, with the exception of few studies that examined model 
sensitivity (Kocabas and Dragicevic 2004) and error propagation (Yeh and Li 2005), the effects 
of spatial properties in CA modelling is largely unexplored (Clarke 2003). The size of the 
neighbourhood and study area are important when defining cell states with fuzzy sets because 
trees are represented by graded values of susceptibility. A higher susceptibility value means that 
fewer insects are required in order to cause significant damage or mortality to the tree. Trees 
with lower values of susceptibility are relatively more resistant to insect attack, and therefore 
would require more insects for tree mortality to occur. If the neighbourhood size or the study 
area size is two small, trees of low susceptibility may not become attacked because there will not 
exist enough infested trees in the surrounding areas to provide enough insects to overcome the 
resistance of the tree. Furthermore, the neighbourhood size determines the distance over which 
MPB will travel; a neighbourhood that is too small or too large will therefore lead to unrealistic 
dispersal patterns. Also, smaller study areas are more prone to edge effects because they are 
more likely to exclude infested trees in the adjacent areas not covered by the study area. 
Therefore, it is important to test the sensitivity of the neighbourhood and study area size in CA 
models based upon fuzzy set-defined cell states for modelling tree mortality patterns due to 
insect infestations. 
 
3. Methods  
The methods for this study are divided into three sections. The first section explains the 
development of the model input using fuzzy sets, the second section describes the development 
of the Tree Mortality Model, and the third section explains the process of testing the sensitivity 
of the scale of the study area and the neighbourhood size of the model. 
 
3.1 Development of Model Input 
A hypothetical study area was used for this study that represents a typical Montane forest of the 
central interior of British Columbia (see Figure 1). The forest landscape consists of stands of 
small, medium and large diameter trees that are dominated by lodgepole pine, with relatively 
smaller proportions of Douglas fir, Pseudotsuga menziesii, and white spruce, Picea glauca, 
scattered throughout, as well as stands of the deciduous aspen tree, Populus tremuloides. The 
study area represents an area of 3km x 3km with a spatial resolution of 3m, where each raster 
cell represents a single tree.  
 
Each tree was represented in the database by its species name and a value indicating its size in 
diameter at breast height (DBH). The DBH values were assigned based on the stand in which the 
tree was located. A tree located in a stand of small trees was assigned DBH between 15cm and 
32cm; a tree in a stand of medium sized trees was assigned a value between 22cm and 42cm; a 
tree in a stand of large trees was assigned a value between 27cm and 52cm. These tree size 
classes were determined from the analysis of ground truth data from a previous study on MPB 
outbreaks in British Columbia (Roberts et al. 2003). Groups of lodgepole pine were selected to 
be attacked by MPB in the current year (i.e. Ti), which are indicated in Figure 1. These killed 
trees acted as the seed trees from which MPB disperse and search for new host trees to attack. 
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Figure 1. Hypothetical data of forest landscape. 
 
 
The study area was analyzed in order to determine the susceptibility of each lodgepole pine tree 
to MPB attack. Four main tree characteristics were identified that provided information on 
susceptibility. The first characteristic was tree size, as larger diameter lodgepole pine are more 
susceptible to attack because they are not as strong as smaller and younger trees at defending 
themselves (Shore and Safranyik 1992, Hinmarch and Reid 2001). The second characteristic was 
species diversity, because a lodgepole pine located in a pure lodgepole pine stand is more 
susceptible than if it were to be located in a stand mixed with Douglas fir, white spruce and 
aspen (Amman and Baker 1972, Thomson 1991, Shore and Safranyik 1992). The species 
diversity value for a tree was defined by the proportion of lodgepole pine trees in the stand in 
which the tree was located. The third characteristic was distance to attacked trees, where 
lodgepole pine that are closer to previously attacked trees are more susceptible to attack (Shore 
and Safranyik 1992). The fourth characteristic was the distance to deciduous stands, as the 
susceptibility of lodgepole pine increase with distance from stands of deciduous trees. This final 
characteristic was determined from a previous analysis based on remote sensing imagery of MPB 
attacked trees (Bone et al. 2005a). Each tree was thus represented with a value for each of the 
four characteristics. 
 

The next step was to use expert knowledge to develop membership functions that explain how 
each characteristic relates to susceptibility (Bone et al. 2005a). The fuzzy membership function 
for each characteristic is shown in Figure 2. Each tree received four values between 0 and 1 after 
the fuzzification procedure representing its membership to the set of large lodgepole pine trees 
µ(LT), the set of trees located in pure lodgepole pine stands µ(LP), the set of trees close to 
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previously attacked trees µ(AT), and the set of trees far from deciduous stands µ(DS). The values 
ranged from 0 for unsusceptible lodgepole pine to 1 for highly susceptible lodgepole pine (the 
value 0 was also assigned to non-lodgepole pine trees and to objects such as roads and open 
spaces). These four values were combined using a multiplicative fuzzy operator that calculates 
the product of all four values, which resulted in each tree represented by a single value for 
membership to susceptible trees µ(Su). A multiplicative operator was selected over traditional 
AND or OR operators because these latter two would only reflect the best and worst case 
scenario of susceptibility, respectively, and would not account for the other variables. The value 
for µ(Su) was calculated by 

 
 

                 )()()()()( ATDSLPLTSu µµµµµ ×××= .          (1) 
 
 
 

 
 

Figure 2. Fuzzy membership functions for (clockwise starting from top- left) large 
trees µ(LT), trees located in pure lodgepole pine stands µ(LP), trees close to 
previously attacked trees µ(AT), and trees far from deciduous stands µ(DS). 

  
 
The final stage of the model input was to create fuzzy transition zones between stands in order to 
represent the intermediate nature of forest stands (i.e. the second problem with defining discrete 
cell states discussed above). This was accomplishedby implementing a 10m buffer on either side 
of the boundaries between forest stands. Each tree in this fuzzy transition zone received a 
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susceptibility value µ(Su) based on the distance to the nearest tree in the adjacent stand and the 
susceptibility value µ(Su) of that tree. The µ(Su) value for a tree in the fuzzy transition zone was 
calculated by 
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where µ(Sui) and µ(Suj) are the susceptibility values of the nearest cell in adjacent stands i and j, 
respectively, and D is the distance to those nearest cells. Each cell in the fuzzy zone had two 
values as it was a member of two stands; therefore, the maximum value was obtained in order to 
represent the higher level of susceptibility. The final result was the input for the Tree Mortality 
Model.  
 
3.2 Tree Mortality Model 
The Tree Mortality Model emulates the annual pattern of trees killed by MPB (Bone et al. 
2005b). The model is composed of three sub-models. The first two – the Initial Attack Sub-
Model and the Spot Growth Sub-Model – are governed by CA, while the third sub-model, termed 
the Mortality Sub-Model, controls MPB population levels. 
 
3.2.1 Initial Attack Sub-Model 
MPB leave their currently infested trees in late July to early August in search of a new tree to 
attack. Females first emerge and fly varying distances in search of a new host tree. Once a new 
host has been selected, the female bores through the bark and releases a chemical compound that 
attracts male beetles to the same tree. The tree’s defensive mechanisms are overcome once a 
sufficient number of MPB have attacked the tree (Powell et al. 1998); fewer beetles are required 
for killing trees that are more susceptible. This initial attack on susceptible trees was modelled 
using a CA with a large landscape-scale neighbourhood in order to allow the beetles to fly from 
one stand to another when in search of a new host. The transition rules for this sub-model were 
defined by an allometric function the explains the relationship between the susceptible value 
µ(Su) of a tree and the number of beetles in the neighbourhood required to kill the tree. These 
rules, illustrated in Figure 3, explain that a tree with a given level of susceptibility µ(Su) will be 
killed if a specified number of MPB are located in the neighbourhood. The Initial Attack Sub-
Model is complete once the CA has been performed for a single iteration, which is equivalent to 
the time span of one week. 
 
3.2.2 Spot Growth Sub-Model 
At the completion of the Initial Attack Sub-Model, the number of beetles on each tree thus far 
attacked has reached capacity. At this point, the beetles boring into the tree begin to release an 
anti-aggregation chemical compound that sends a single to beetles still flying toward the tree that 
no more beetles are required to kill the tree (Huber and Borden 2001). The anit-aggregation 
compound redirects beetles to nearby trees which they begin to attack in attempt to kill. This 
creates what is termed as ‘spot growth’ (Carroll and Safranyik 2004), where trees are attacked in 
clusters. Spot growth was modelled using a CA with a smaller local neighbourhood in order to 



 

 

 

8 
 

ensure local clusters of trees were attacked. This sub-model also used an allometric function to 
define the transition rules. The Spot Growth Sub-Model was completed after the CA had been 
performed for two iterations – each iteration again representing one week. 
 
 

 
 

Figure 3. The CA transition rules are governed by an allometric function 
explaining the percentage of MPB infested trees required in the 
neighbourhood in order for a tree of a given susceptibility µ(Su) to 
become attacked. 

 
  
3.2.3 Mortality Sub-Model 
MPB experience high levels of mortality each winter when cold temperatures have detrimental 
effects on the developing stages of the beetles. During outbreaks, it is common to have a 
mortality level of 80% due to cold temperatures. Winter mortality was simulated by having 80% 
of the attacked trees void of MPB. This resulted in having 80% less trees as sources of MPB for 
the following year’s attack, but the trees from which the beetles were removed were still 
considered dead. The completion of the Mortality Sub-Model produced the pattern of trees killed 
by MPB after one year. This also represents the completion of one cycle of the Tree Mortality 
Model, which is the equivalent to one life cycle of the MPB. Therefore, the Tree Mortality Model 
was performed for five cycles in order to represent a five-year period of MPB-induced tree 
mortality.   
 
3.3 Sensitivity Analysis 
The sensitivity of the Tree Mortality Model was tested based on the size of the neighbourhood of 
the Initial Attack Sub-Model and the scale of the study area. The initial neighbourhood size was 
500 x 500 cells, which facilitated MPB dispersal across the landscape. The neighbourhood size 
was changed to 400 x 400, 300 x 300 and 200 x 200 cells in order to determine the effects of the 
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variable neighbourhood on MPB-induced patterns of tree mortality. Neighbourhood size was 
tested using the entire study area and performing the Tree Morality Model for five cycles for 
each neighbourhood size. 
 
The model was then performed on the central area of the forest landscape in order to test the 
sensitivity of the scale of the study area. The central area was defined by dividing the original 
landscape into nine equal-sized quadrats and using the central quadrat (Figure 4). Only the MPB 
infested trees located in the centre quadrat were used for this test, as the infested trees located 
outside the centre quadrat were eliminated. The Tree Mortality Model was performed for five 
cycles, and the results were compared to the tree mortality patterns over the same area when the 
entire study area was used for the model. A neighbourhood of 500 x 500 cells was used for this 
test. 
 
 

 
 
Figure 4. The central area (left) of the study area (right) used to test the 
sensitivity of the model to the size of the study area. 

 
 
4. Results 
The result of the model input development is shown in Figure 5. The result is a forest landscape 
represented by values µ(Su) between 0 and 1 indicating each tree’s susceptibility to MPB attack. 
The value 0 refers to lodgepole pine that exhibit no susceptibility and also to objects other than 
lodgepole pine such as Douglas fir, white spruce and aspen trees, open areas and roads. Values 
closer to 1 represent higher levels of susceptibility, which are indicated in Figure 5 with a lighter 
shade.  
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Figure 5. Tree Mortality Model input derived from fuzzy sets. Darker shade 
indicates lower susceptibility (µ(Su) values close to 0) and lighter shade 
indicates higher susceptibility (µ(Su) values close to 1. 

 
  
The results for the Tree Mortality Model using the original study area for testing the four 
different neighbourhood sizes are shown in Figure 6. Each model was performed for five cycles 
representing the tree mortality from the end of the first year (Ti+1) to the end of the fifth year 
(Ti+5). The results from the sensitivity analysis of the scale of the study area are presented in 
Figure 7 where the tree mortality patterns are shown for the central area of the study area. 
 
A numeric analysis of the number of trees killed is also provided for the different 
neighbourhoods (Figure 8) and for the different size study areas (Figure 9). These two graphs 
illustrate how using different neighbourhoods or study area sizes affects the overall number of 
trees killed for each cycle of the model. 
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Figure 6. Five-year simulation of MPB-induced tree mortality patterns using a (a) 500 x 500 neighbourhood,     
(b) 400 x 400 neighbourhood, (c) 300 x 300 neighbourhood, (d) 200 x 200 neighbourhood. 
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Figure 7. Five-year simulation of MPB-induced tree mortality for the central region using (a) the entire study area as 
the input for the model, and (b) using only the central quadrat as the input for the model. 
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Figure 8. Number of trees killed at each cycle of the model for each 
neighbourhood size. 
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Figure 9. Number of trees killed at each cycle of the model for 
different size study areas. 

 
 
 
 

Neighbourhood Size 



 

 

 

14 
 

5. Discussion 
The results from the analysis of the Tree Mortality Model indicate that the model is significantly 
sensitive to the choice of the size of both the neighbourhood and study area. A visual and 
numeric analysis of the images from the five-year simulations of MPB-induced tree mortality 
patterns reveals several findings. 
 
First, the results presented in Figure 6 clearly illustrate that smaller neighbourhoods result in less 
overall trees attacked during the first two cycles, which is confirmed by the information from 
Figure 8. The decrease in the number of attacked trees was due to two reasons. The first reason is 
that smaller neighbourhoods restrict the distance over which MPB will disperse through the 
forest. Large neighbourhoods include more trees, therefore highly susceptible trees that are 
relatively far from currently infested trees can still become attacked. Spot growth then 
commences once the distance trees are attacked, which creates new areas of infested trees. 
Smaller neighbourhoods limit dispersal and therefore result in more localized infestations that 
require more cycles in order to spread significant distances. 
  
The second reason for fewer attacked trees when using a smaller neighbourhood for the first two 
cycles was because trees of low susceptibility were seldom attacked. The results show that low 
susceptible trees were not attacked until at least the third cycle for the simulations using the 
neighbourhood with 300 x 300 cells, and not until the fourth cycle for the 200 x 200 cells 
neighbourhood (excluding the trees that were already attacked at initial time Ti). However, low 
susceptible trees were attacked in the first cycle when using the 500 x 500 cells neighbourhood. 
This difference is due to the fact that smaller neighbourhoods do not cover a large enough area 
for a sufficient amount of infested trees to be considered in order for low susceptibility trees to 
be attacked. This leads to few low susceptible trees attacked, and a large number of high 
susceptible trees to become attacked in a dense area when using the smaller neighbourhoods. 
Conversely, the results using the neighbourhood with 500 x 500 cells exhibit a more dispersed 
pattern of tree mortality as insect attack was more spread out due to high numbers of insects in 
the neighbourhood that allowed for mortality of both high and low susceptible trees. 
  
Figure 8 also shows that after the second cycle tree mortality for the 500 x 500 and 400 x 400 
cells neighbourhood decreases considerably for the remaining three cycles to the point where it is 
less than the tree mortality for the neighbourhood with 200 x 200 cells. This occurred because a 
significant number of trees were killed in the first two cycles using the larger neighbourhoods, 
which left fewer trees to attack in the remaining cycles. Whereas tree mortality occurred more 
slowly using the 200 x 200 neighbourhood, which allowed for more trees to be killed in the last 
cycle.  
  
Similar observations were made when examining the results from testing model sensitivity using 
different study area sizes as presented in Figure 7. That is, the smaller study area received 
significantly less attacked trees for the central area than did the model using the entire study area. 
This is due to the fact that the smaller study area was not able to acknowledge MPB-infested 
trees in the areas adjacent to the boundaries of the study area. Therefore, there were significantly 
fewer infested trees in the neighbourhood of each tree, which resulted in small amounts of 
attacked trees in areas of high and medium susceptibility, and no attacked trees in areas of low 
susceptibility. Conversely, the results from using the entire study area demonstrate high 
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incidences of attacked trees in all areas because all the currently attacked trees were taken into 
consideration. Although tree mortality for the entire study area decreased significantly over the 
five cycles as shown in Figure 9, it still remained higher than tree mortality for the smaller study 
area. 
  
It is important to consider the behaviour of MPB when deciding which is the appropriate 
neighbourhood and study area size due to the significant difference in patterns resulting from the 
CA model simulations. Safranyik et al. (1999) state that MPB disperse varying distances to 
attack highly susceptible trees first and more frequently than low susceptible trees. Less 
susceptible trees become attacked as MPB population increases as large areas became infested. 
Therefore, a larger neighbourhood (i.e. a 500 x 500 cells or 400 x 400 cells neighbourhood) and 
study area size is more appropriate as MPB disperse both near and far distances oppose to the 
smaller neighbourhood and study area simulations where MPB mostly dispersed in nearby areas. 
Furthermore, the CA model that uses larger neighbourhood and study area sizes also ensure that 
MPB attacked less susceptible trees once a sufficient amount of high susceptible trees were 
attacked and MPB population increased. However, the neighbourhood with 400 x 400 cells is 
more appropriate than the 500 x 500 cell-neighbourhood because the simulated patterns indicated 
too many low susceptibility tree may been attacked us ing the latter, which corresponds to the 
logic derived from Safranyik et al. (1999).  
  
The importance of this study is that the parameters selected for CA modelling can significantly 
influence the results of the model. Parameters such as the neighbourhood have to be carefully 
selected in order to adequately represent the modelled phenomenon. The neighbourhood size was 
considered the most sensitive of the five CA components at the onset of this study because the 
use of graded susceptibility values µ(Su) increased the importance of the number of attacked 
trees that were considered to be in the local area; therefore the neighbourhood size was tested 
and conclusions were drawn. However, this study can be extended to test the sensitivity to other 
components such as the size of the cells in the raster grid, the number of cell states, the types of 
transition rules or the number of iterations for which the model is performed. Furthermore, the 
choice of the size of the study area is important for CA modelling as small study areas can 
exclude important information that can cause major variations in the simulation results. 
Conversely, the use of study areas that are too large may provide redundant information while 
the geospatial data collection at high resolutions may be costly. Overall, these points stress the 
need for careful consideration when developing dynamic models for simulating complex spatial 
systems.  
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