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Abstract

The andlyds of point event patterns in geography, ecology and epidemiology have a
long tradition. Of particular interest are patterns of clustering or ‘hot spots and such
cluster detection lies at the heart of spatia data mining. Certain classes of point event
patterns exhibit a tendency towards spatid repetitiveness (within the resolution of geo-
postioning) dthough with a tempord separation. Examples are crime and traffic
accidents. Spatiad superimposition of point events challenges many existing approaches
to cluster detection. In this paper a variable resolution approach, Geo-ProZones, is
gpplied to resdentia burglary data exhibiting a high leve of repesat victimisation. Thisis
coupled with robust normalisation as ameans of congstently defining and visudising the
“hot spots' .

1. Introduction

The analysis of point event paiterns in geography, ecology and epidemiology have a long tradition
(e.g. Snow, 1855; Clark & Evans, 1954; Harvey, 1966; Mantel, 1967; Cliff & Ord, 1981). The
patterns detected are usualy broadly classified as random, uniform or clustered. Although a pattern
of gpatid randomness in data has traditiondly been assumed to have no underlying process of
interest, Phillips (1999) has nevertheless pointed out that such gpparent randomness may be
attributable to chaotic determinigtic patterns and should therefore not be ignored out of hand. Where
a point pattern exhibits spatid uniformity, a spacefilling mutua excduson process can be
hypothesised. Clustered patterns, however, have generdly raised the strongest interest and
hypotheses for underlying processes. Thus cluster detection lies at the heart of spatial data mining
(Murray & Edtivill-Castro, 1998; Openshaw, 1998; Murray, 2000; Miller & Han, 2001).

Clustered point patterns can be visudised spatidly as loca concentrations of events in close
proximity to one another with each cluster separated by intervening spaces characterised by empty,
less dense or gpparently random patterns of point events. However, certain classes of point event
paterns have a dgnificant proportion of thelr data having a tendency towards exact spatia
repetitiveness (within the resolution of geo-positioning) athough with atempora separation between
events. Typicd examples would include: crimes recorded againgt a property address (e.g. resdentia
burglary, shoplifting, intimate partner violence), traffic accidents recorded againgt a section of road



or intersection, utility failures recorded against a node or discrete section of network and so on. The
focus of andyds of such data satsisin defining ‘hot spots (e.g. for crime) or *black spots' (eg. for
traffic accidents) where spatial clustering exists, but the occurrence of this spatid superimposition of
point events challenges many existing agpproaches to cluster detection. In this paper a varigble
resolution approach, Geo-ProZone anaysdis, is gpplied to resdentia burglary data exhibiting a high
level of repeet victimisation. This is coupled with robust normdisation as a means of consstently
defining and visudising the highest dengities or * hot spots'.

2. Cluster detection of ‘hot spots

The literature on clustering of point event data can be broadly classfied into two approaches. One
st of approaches is dlied to maingtream datistics emanating from the work of Soka & Sneath
(1963). Thus clugtering is a means of classfication or grouping where clusters can be defined as
“groups of highly smilar entities” (Aldenderfer & Blaghfidd, 1984, p7). Spatidly, this approach to
clugter andysis will seek to form a segmentation into regions which minimises within-cluster variation
but maximisss between-cluster variation. There is a generd expectation tha the clustering will be
mutudly exdusive ininduding al points and is therefore space-filling within the geographica extent
of the data (see for example Murray & Edivill-Castro, 1998; Murray, 2000). Hdls et al. (2001)
and Egivill-Castro & Lee (2002) provide examples of the use of Dirichlet and Ddaunay diagrams,
respectively, to define spatid clusters. These dgorithms, however, will fail where points occupy the
exact same location. To deete duplicate points to overcome this problem is likdy to lead to
important data loss, whilst to shift points dightly into non duplicate positions will introduce sgnificant
bias away from being able to detect such repeat events. The second broad set of approaches uses
spatidly exhaudtive search to identify locdised excesses of event occurrences. Typicd of this
gpproach is the Geographica Andysis Machine (GAM) and its descendants (Openshaw et al.,
1987; Openshaw, 1998). Similar approaches are based around kernel dendty edtimation
(Slverman, 1986; Atkinson & Unwin, 1998; Brunsdon, 1995) in which the highest denstiesform
‘hot spots (eg. Gatrdl et d., 1996). This gpproach is particularly popular in crime andyss
(Harries, 1999; Ratcliffe & McCullagh, 1999; McLafferty et al., 2000) with GIS functionality
available, for example, in the Spatid Andyst extension to ArcView® and in Hotspot Detective for
Maplnfo® (Figure 1).
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Figurel. Kernd densty estimation for ‘hot spot’ detection: () burglary point event data set; (b)
kernel dendty edimation using default parameters (superimposed on point pettern) -
‘hot spots are usudly taken to be the highest intensity locations.

The popularity of the kernel density estimation (KDE) approach is clear from its ease of use and the
driking visudisations it can produce It is neverthdess an interpolation that transforms the point
events into a more-or-less smoothed continuous surface and, with any such technique, parameters
need to be set that are critica to the outcome. For KDE these are the underlying grid sze and the
kernel bandwidth. Reasonable vaues for parameters can be difficult to estimate and are often done
S0 subjectively (Sabd et al., 2000). Fotheringham et al. (2000) suggest an optimum bandwidth
caculated from the standard distance. For Situations where there are contrasting dersities across a
study area (e.g. urban to rural), an adaptive bandwidth can be employed (Brunsdon, 1995). Best
practice would suggest a form of sengtivity andyss to identify optimum parameter vaues
(Brimicombe, 2003). Figure 3 shows such an agpproach for a fixed grid size (one hectare) and
varying bandwidth. The maximum nearest neighbour distance (NND) between point events in
Figure 1(a) is 574m or approximately 12 times the median NND of 47.5m; so as asmple sengtivity
test the bandwidth has been bracketed at three, six and nine times the median NND. The effect isto
produce increased Sze and severity of ‘hot spots . The software default settings producing Figure 1
(b) produces the grestest visua impact. But what then is an acceptable ‘truthi ? Although from a
research perspective the sengtivity to grid sze should dso be tested, the pragmatics of the
workplace usudly means that andysts accept the default values for parameters suggested by the
software as a matter of convenience.
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Figure 2. Searching for optimum bandwidth: (8) 3 times median NND; (b) 6 times median NND;
(c) 9 times median NND{ for legend see Figurel}.

The burglay data st presented here has a large number of repeat victimisations giving
superimposed point events Theory would suggest that ‘hot spots would be quite locdlised. High
crime aress are primarily so because they are areas of high repeat offending and high repest
victimisation (Trickett et al., 1992; Towndey et al., 2003). KDE, as used by many police ardydts,
smoothes over the very localised repest victimisationsin favour of the regiona pattern with choice of
end result driven more by the aesthetic qudities of the visudisation. Boundary effects around the
edge of data sets are also a problem for dersity estimation and perhaps not surprisingly police
andysts tend not to find *hot spots' at the edge of their jurisdictions. KDE software in the public



domain by Atkinson & Unwin (2002) for Mapinfo® does offer a guarded buffer to avoid spurious
values at boundaries but does not entirely overcome the problem of how to identify red ‘hot spots
that exist at boundaries. Figures 1 and 2 focus attention on crime counts, that is, an elevated share
of crime in a localised area ‘Hot spots based on counts inform the deployment of resources in
regpoonse to events. Less common in crime anadyds (but more common, for example in
epidemiology) are ‘hot spots based on elevated rates. Such ‘hot spots' reflect the level of risk and
thus inform deployment of resources for mitigation. For the same distribution of point events, ‘hot
spots based on counts are often different to those based on rates as the latter are not just a function
of the distribution of point events but aso of the underlying population &t risk. 1dedlly both should be
used. Sabel et al. (2000) report the use of KDE in association with an underlying population at risk
to map reative risk of disease occurrence. Whilst readily implemented, it suffers from the added
difficulty of parameter estimation for two KDE surfaces (disease occurrence and population at risk)
that are then combined to produce aratio surface.

3. The Geo-ProZone algorithm

The theory of adaptive recursve tessdlations is given in Tsui & Brimicombe (1997a8) with
goplicaions of their use for spatiad andyssin Tsui & Brimicombe (1997b). Specific gpplication to
point pattern analysis can be found in Brimicombe & Tsui (2000) and Brimicombe (2003). At the
heart of adaptive recursve tessdlations is a variable resolution approach to space. No longer are
scae and resolution treated as being uniform across an area but are alowed to vary localy in
response to the point pattern. This is achieved through a recursive decompostion of space, smilar
to quadtrees, but dlowing varigble decomposition ratios (quadtrees only have 1:4 retio) and
rectangular cdls (quadtrees are usudly redtricted to square cells). The dgorithm makes no prior
assumptions about the statistical or spatid distribution of points. Each point is trested as a binary
occurrence of some phenomenon without further descriptive attributes. The starting point is a
convex hull of dl the point events. Maximum and minimum x and y vaues of the data set form the
maxima cdl. The decison to further decompose any one cdl larger than the aomic cdl szeis
based on the variance a the next level of decomposition and a heurigtic on the number of empty
cdls that result. The atomic cdl sze (or samdlest possible cdll size) is mediated between the median
nearest neighbour distance and average cell Size per point, whichever is smdlest. Any cdls formed
through decomposition that fal outside the convex hull are autometically deleted. Tests have shown
the agorithm to be condgently effective in comparison with other gpproaches of point cluster
detection (see Brimicombe & Tsui, 2000). The resulting clusters are termed Geo-ProZones (GPZ)
as they represent zones of geographical proximity in the point pattern. As with kernel density
estimation, the highest dengities can be taken as ‘hot goots . However, GPZ are not an interpolation,
but a segmentetion into polygons having internd consstency in the digtribution and density of the
point events within them. Also, it does not suffer from boundary effects. GPZ for the burglary events
in Hgure 1 are given in Figure 3.

The pattern in Figure 3(b) reflects the pattern in Figure 1(b). The underlying speckle arises because
al events are mapped without smoothing. The highest densities, or what would be interpreted as
‘hot spots’, occur as more localised concentrations of repesat victimisation. Since GPZ results in
polygons, they can be readily overlad on an underlying population a risk (such as from census
data) and re-classfied as rates. Figure 3(c) shows GPZ as rates per thousand households from the
underlying census data. The pattern of “hot spots' is quite different and identifies where citizens are



at greatest risk. Some of these areas gppear reasonably extensive, others are quite localised where
repeat victimisation is occurring.
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Figure 3. Geo-ProZone andyss. (8 burglary point events, (b) GPZ for density of burglaries per
hectare; (c) GPZ for rate of burglaries per thousand households.

4. Robust normalisation for outlier detection and consistent visualisation
Whilst GPZ offers important methodologica improvements in cluster detection where there is a
tendency towards locdised repetitive events, outstanding issues for this (and any other approach)
relates to the well-known limitations of thematic mapping: number of dass intervds, the fixing of
class boundaries and what coloursto use. Thereisthe added issue of what congtitutes the cut off for
a ‘hot spot’. In practice, decisons often lack consistency. One approach is through data
normdisation. A new form - robust normaisaion - (Formula 1 below) has been introduced
(Brimicombe, 1999, 2000) as an dternative to the popular Z transformation where data are skewed
and where aZ transformation of such dataislikely to be biased.




{(x — median)

2

for x < median
(median - lower quartile)

{(x — median)
RN = for x > median
(upperi quartile - median)

RN =0 for x = median Q)

The term ‘robust’ refers to the use of the median and inter-quartile range from robust gatistics
(Hettmansperger & McKean, 1998). The outcome of robust normalisation (Figure 4) is a
digribution of median = 0, lower quartile = -1 and upper quartile = +1. Vaues of <-3 and >+3 are
consdered extreme values and the transformation can be used consistently for detecting outliers. It
aso provides a means of defining consstent class intervals and cartographic representation where
the ability to make visua comparisons is important. Robust normdisation is achieved usng the
agorithm in Formula 1 which is easily coded as a Microsoft® Excd macro. For very ‘flat’ data sets
where the lower quartile equals the median or upper quartile equas the median (or dl three equa
each other), then robust normdisation is likely to fail (divison by zero). The Exce macro therefore
contains diagnogtics to warn the user of such situations.
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Figure4.  Robugt normdisation of two dissmilar distributions to achieve the same interquartile
range, identify outliers and achieve consistent map legend classes (5 or 7 intervas) for
visudision.

Robust normalisation can be applied both to area-based data and to density estimate interpolations.
For *hot spot’ detection it is the extreme positive vaues (>+3) that are of most interest. The robust
normalised digtribution easily lends itsdf to five or seven dass intervas with cass boundaries at
quartiles (in the saven dass interval scheme the vaues immediately around the median are further
separated, as in Figures 4 and 5) and can be used in a sandardised way for dl visudisations. This
alows more objective comparisons between maps (either of different variables or of the same
varidble over time). Figure 5 shows robust normalisation applied to both GPZ dendties and rates
from Figure 3 overcoming problems of arbitrary numbers of classes and class intervals. Localised
‘hot spots are where there are extreme positive values. By anaogy ‘cool spots would be where



there are extreme negative vaues. Clearly picked out in Figure 5(b) are the locaised excesses of
counts that represent ‘hot spots of repeat victimisation. More griking though is Figure 5(c) which
shows many more locaised excesses of rates when counts are related to the underlying population
at risk. Importantly, in both cases the “hot spot’ distributions do not necessarily conform to initia
subjective impressions of the point patterns (Figure 5(a)) as the ‘hot spots are in fact occurring
where point events are superimposed and hence can neither be picked out by eye nor effectively by
kernd dendty estimation.
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Figure5.  Applying robust normdisation: (8) burglary point events, (b) GPZ for dendty of
burglaries per hectare; (c) GPZ for rate of burglaries per thousand households; {legend
appliesto both (b) and (c)}.

5. Conclusions

A consistent gpproach to cluster detection and visudisation of *hot spots through the combined use
of Geo-ProZones and robust mrmdisation has been presented. The Geo-ProZones adgorithm
overcomes problems raised when data sets exhibit a tendency towards spatidly repetitive events
and where *hot spots will be highly locaised. It dso overcomes the boundary issues associated
with KDE. The dgorithm is suited to producing both segmentations of point dendties and ratesrisk
in relation to underlying populations a risk. Problems can arise, however, from the presence of
gpatia outliers digtorting the initial convex hull created around the point events. Improvements to the
dgorithm are being investigated to reduce sengtivity to any such outliers. Robust normdisation
provides consstency in defining class intervals with ‘hot spots as localised extremes. Visud map
comparisons for decision making are rendered more objective. Applications of the approach have
been successfully used in andyses of crime, hedth and pipe burdts in water reticulation systems.
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