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Abstract 
Developing categories for health data is a crucial step for health researchers to 
explore, analyze, display and disseminate information about and relationships 
between health data and related socio-economic factors. The process for developing 
categories and exploring the relationships between health data and risk factors 
involves three (traditionally separate) aspects that encompass: (i) mentally-held 
concepts, (ii) the data, and (iii) the available categorization methods. Current 
approaches to exploratory analysis do not integrate these three aspects well, leading 
to difficulties and inertia during the process. This paper describes our efforts to build 
a system that encompasses the full extents of the categorization problem as it applies 
to the analysis of health data and risk factors. The system employs a range of visual 
and computational components, including a concept browser, a variety of exploratory 
visualization tools and many different classifiers. It is recognized specifically that 
successful analysis involves the dynamic interaction between all of these tools within 
a cycle of scientific investigation. In our example, we explore the relationships 
between cancer mortality and the risk factors by taking into account both the abstract 
conceptualization of the relationships and the emergent properties, which the dataset 
and classifiers provide. The tools in the system, ranging from visualization to 
classification components, are shown in the case study, along with how they might be 
used. 

 
1. Introduction 
With the increasingly large and complex health data and their risk factors information, there is a 
new emphasis in epidemiology research that encourages exploration of health data to generate 
new hypotheses. Developing categories is a crucial step for health researchers to explore, analyze, 
display and disseminate information about health, social and economic factors, and the 
relationships between them. In general, categories are constructed by specific categorization 
methods based on analyzing data and / or utilizing an expert’s domain knowledge; so categories 
are not only determined by the underlying conceptualization, but also by a combination of the 
categorization methods chosen and data used in their construction, and the domain knowledge 
and experience that are brought to bear during construction. Categorization and exploration of 
relationships between health data and their risk factors are iterative, learning processes, which 
are full of trading off between the data, methods and conceptual knowledge to reach a (hopefully) 
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stable equilibrium.  

However, current approaches cannot provide an efficient iterative environment to users, since the 
three aspects, i.e. human concept, data, categorization methods, are not well integrated in any 
single computational system. These tools representing the three aspects are largely separated 
from each other, with no means of interaction; in fact they typically reside in quite distinct 
software products with poor integration between them. As a result, many categorization methods 
are heavily computational and opaque to analysts, who can only examine whether the 
categorization is a success or failure by examining the results. They have no effective approach 
to understand whereabouts the methods are failing, if the process itself fails. Also, there is no 
expression of the conceptual component within the system, it typically remains locked in the 
head of the analyst. 
 
A model is need that can integrate the three spaces of categorization, i.e., data, methods, and 
human concepts, in the exploration process, and enable analysts to move seamlessly between the 
three spaces until interesting patterns and relationships between health data and risk factors are 
identified.  
 
2. Related Works 
Within the geographic domain, there are two distinct sets of techniques to encode and depict 
conceptual structures. One set of techniques involves research on ontologies and concept maps 
(Smith and Mark, 1998; Rodriguez and Egenhofer, 2003). The other set of tools support 
exploration and knowledge discovery activities, such as geovisualization and exploratory spatial 
data analysis (ESDA) (DiBiase, 1990; Dykes, 1997; MacEachren et al., 1999; Gahegan 2001; 
MacEachren et al., 2003).  These two types of tools represent both ends of a continuum. The first 
set of tools, ontologies and concept maps, employs a top-down view of the world, and consider 
mentally held concepts1 and their relationships. The second set of tools uses a bottom-up view of 
the world, i.e., the actual data to be analyzed and its emergent properties. However, these sets of 
tools are largely separated from each other, and typically reside in quite distinct software 
products with poor integration between them. But activities at either end of this continuum of 
science activities should not be artificially isolated by the systems we use because they are 
intimately connected in a conceptual sense. 
 
The literature (DiBiase, 1990; MacEachren et al., 1999) indicates that visualization has potential 
to help analysts to iteratively explore data samples, incorporate their knowledge, display 
classification, and identify problems. Lucieer and Kraak (2002) implemented visualization tools 
together with a supervised fuzzy classification algorithm to improve a geoscientist’s insights into 
uncertainty in remotely sensed image classification. Functionalities such as dynamically linked 
views and geographic brushing are emphasized in the visualization tools to explore data in a set 
of multiple data views (Monmonier, 1989; Carr, 1987). Thus, visualization has the potential 
advantage to be an interface between human and computational components since it creates 
graphical images of data, helps humans to explore, reason and learn effectively, and usually 
enables an interactive visual exploration of the data. 
 
                                                 
1 Here we use the word ‘concept’ to indicate a mental notion of some set of like entities.  Examples might be the 
mental idea of cancer mortality or the positive relationship between cancer mortality and poverty. 
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Visualization has been used in the health data research since the seminal work by John Snow 
(1855) on spatial analysis of cholera epidemiology. These days, atlases of diseases, such as 
cancer mortality, heart disease mortality, and so on, are effective in supporting research and 
disseminating results (Pickle et al. 1999). Edsall (1999; 2003) created a geospatial data 
exploration system, including a choropleth map, a parallel coordinate plot, and a scatterplot, to 
analyze health statistics data. He argued that the multidimensional nature of health statistics and 
their analysis called for the integrated approach for geovisualization. Carr et al. (2000; 2005) 
developed a linked micromap template to display maps with boxplots, dotplots, and other 
statistical graphics. These linked micromaps are implemented to disseminate health data for 
public use in an easily interpretable format. Carr et al. (2005) also designed CCMaps, a 
conditioned choropleth mapping tool. The CCMaps tool provides a matrix of conditioned 
choropleth maps to facilitate exploration of two variables to a third variable, on which users are 
able to condition by using sliders. MacEachren et al. (2003) explored the trend in lung cancer 
mortality for white females with the support of visualization tools in ESTAT. Anselin et al. 
(2004) developed the GeoDA spatial analysis toolkit to explore patterns of colon cancer 
incidence in parts of Appalachia. 
 
3. Our Solution 
This study introduces an iterative approach to explore health data and their socio-economic 
factors from various integrated perspectives, such as data, classification methods, and human 
conceptualization of relationships (shown as a concept map). This integrated approach is enabled 
by the visualization interface, via which the methods drawn from data exploration, statistical 
summaries, classification methods and conceptualization of relationships are linked and able to 
interact with each other. Users can move seamlessly between the data exploration, classification 
processes and their mental conceptualization until new and informative relationships are 
identified. This system, thus, will facilitate and connect together the processes of 1) creating, 
browsing and revising concepts in ontological and taxonomic browsers, 2) selecting concepts to 
use in a specific analysis exercise, 3) exploring the data to help formulate concepts from 
emergent structures, and 4) dynamically modifying the concepts according to the relationships 
emerged from the data (i.e. relationships that do not align well with mental concepts). 
 
Specifically, the initial relationships can be constructed by users based on their domain 
knowledge or data and visualized in conceptVISTA, a kind of dynamic concept map based on 
the TouchGraph graph visualization package (www.tuuchtraph.com). Data, on the other hand, 
will be explored in various multivariate exploratory graphs, such as parallel coordinate plots, 
scatterplot matrices, and choropleth maps, in both attribute and geographical space. At this step, 
data are preprocessed by choosing informative variables, and rejecting outliers based on the data 
patterns and statistical summaries over all of the attributes. The intermediate steps of the 
exploration process and relationships between variables can also be examined in the visualization 
tools interactively, including parallel coordinate plots, scatterplot matrices, and choropleth maps, 
since the data distributions and bivariate relationships can be visualized and mapped based on the 
criterion that observations with similar patterns are close to each other. Potentially new and 
improved relationships, then, can be achieved by allowing users to choose the right variables, 
compare relationships of variables between different sub regions, and choose appropriate 
methods between different types of classifiers, or refine their conceptualization of the problem 
via concept map.  
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4. Case study 
 
4.1. Data and study area 
Appalachia’s mountainous region is selected as one of the study areas in this research. In 
general, Appalachian states exhibit cancer mortality rates that are greater than the national 
average, with particularly high mortality rates of lung, cervical and colorectal cancers (Table 1). 

Generally speaking, the relatively high rates in cancer mortality are thought to be related to the 
lack of knowledge about cancer prevention, detection, and treatment. Moreover, the lack of 
knowledge about cancers can be linked to limited access to health information and health care 
services, which can further due to poverty caused by low incomes, low education levels, high 
unemployment, and other socio-economic factors that negatively impact public health in this 
region. Many Appalachian counties have higher poverty rates, lower education levels, and lower 
income as compared to the nation as a whole. While poverty might not be directly related to 
higher mortality rates of cancers, poverty and cancer mortality rates are certainly correlated.  

Based on the discussion above, a possible general relationship between cancer mortality rates 
and the socio-economic risk factors, especially the poverty and poverty related status, are 
constructed as a concept map (Figure 1). In this initial hypothesis, the cancer mortality rates are 
correlated with socio-economic status, with high cancer mortality rates relating to poverty 
generally. This hypothesis is the starting position for the analysis that follows, using breast 
cancer and cervical cancer mortality as the example. 

 
 

Table 1: Appalachia Cancer Network Age-adjusted Cancer Mortality Rates per 100,000, 
1991-1995. 

 Number of 
Appalachian 

Counties 

All 
Cancers 

Lung Breast Cervical Colorectal Prostate 

United States  171.4 49.8 26.0 2.8 17.8 26.1 
Tennessee 50 180.3 59.2 24.6 3.0 16.6 25.7 
Kentucky 49 197.6 71.2 24.2 4.5 18.1 25.3 
Virginia 23 176.0 56.5 25.9 2.9 15.7 22.3 

West Virginia 55 189.5 61.8 23.9 3.7 18.8 24.8 
Ohio 29 184.7 58.7 25.7 3.5 19.6 23.2 

Pennsylvania 52 177.0 47.6 27.6 2.7 20.1 25.5 
Maryland 3 172.6 49.0 22.1 2.9 21.7 25.7 
New York 14 174.9 49.7 27.2 2.8 19.4 26.7  

Source: National Center for Health Statistics. State rates include only Appalachian counties. Cited from 
http://www2.kcr.uky.edu/acn/pdf%20files/mortality.pdf. 
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Figure 1: The initial concept map showing rela tionships between cancers and poverty, and 

the socio-economic factors which contribute to the poverty. 

 
This exploration of cancer and socio-economic 
factors involves cancer registry and demographic 
data, gathered at the county level for 
Appalachian states. The study area is focused in 
the 156 counties known as the NAACCR (North 
American Association of Central Cancer 
Registries) gold states (those states with good 
cancer registry data) within the Appalachian 
Cancer Network, which covers part of the states 
of Kentucky and Pennsylvania and all counties 
in West Virginia (Figure 2). The cancer data 
used in this study are obtained from NAACCR. 
The census data can be downloaded from several 
websites, such as www.esri.com and 
http://nationalatlas.gov. Demographic datasets 
typically include attributes such as population, 
race, gender, housing, education, health care, and income information. 
 
4.2. Category Exploration for Cancer Data and Risk Factors  
The exploration process for cancer and risk factors data is one of iterative learning, involving 
exploration of three aspects, i.e. human concepts, data, categorization methods. The integrated 
system allows users to take advantages of both knowledge driven and data driven approaches, 
and enables analysts to move seamlessly between the three spaces. 

 

 
Figure 2: Study area covers part of the states 
of Kentucky, West Virginia, and 
Pennsylvania. 
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The general relationships between cancer mortality rates and the socio-economic factors are 
illustrated in Figure 1. High cancer mortality rates are usually associated with poverty and other 
socio-economic factors relating to poverty. Researchers tend to group data samples (counties 
here) according to the rates of different cancer mortality and values of socio-economic variables, 
and then explore the patterns and relationships between counties with different cancer mortality 
rates and counties in different groups for socio-economic status. For example, one might select 
only the breast cancer mortality rate in Figure 1, and group the counties into three categories 
according to this rate, i.e. high, middle and low mortality rates (Figure 3). Counties can then be 
grouped into the three categories with various exploratory tools, such as scatterplots and 
choropleth maps (Figure 4). Spatial pattern can be explored via the map where we see that most 
of the counties in Pennsylvania are colored using dark and mid magenta colors, and many 
counties in Kentucky and West Virginia are shown as gray or magenta. This pattern illustrates 
that the counties with relatively high breast cancer mortality rate for white females for the time 
period 1970-1994 are clustered in Pennsylvania, and the counties with low or intermediate breast 
cancer mortality rates are mostly in Kentucky and West Virginia. 

 

 
Figure 3: Initial concept map derived from Figure 1 based on the rate of breast cancer. 

  
The pattern of breast cancer mortality rate in these 
counties is apparently not random, so we can 
investigate reasons underlying why the cluster of 
counties with high breast cancer mortality rate occurs 
in Pennsylvania, leading us to examine the risk factors 
that might relate to this rate. One hypothesis is that the 
high cancer mortality rates in the Pennsylvania are 
related to the low socio-economic status, including 
poverty, in this area. So the next step adds one more 
variable, per capita income, into the analysis. A 
bivariate map with variables of breast cancer mortality 
rates and per capita income is generated to explore the 
spatial patterns between these two variables 
(Figure 5). In Figure 5, the variable breast cancer 
mortality rate is represented in magenta, and the 
variable per capita income is represented in green. The 
156 counties are divided into nine classes based on 
these two variables, that is low-low, low-middle, low-
high, middle- low, middle-middle, middle-high, high-

low, high-middle, and high-high for the two variables. The counties colored with dark gray are 
those counties high in both breast cancer mortality rate and per capita income. Apparently, the 

 
 

Figure 4: Choropleth map with 
categories divided by low, middle, 
high rates in breast cancer mortality 
for white females 1970-1994. 
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counties with high per capita income are also clustered in Pennsylvania and the counties with 
low income and breast cancer mortality rate (shown in light gray) are mostly in West Virginia 
and Kentucky. This pattern indicates that the breast cancer mortality rate is positively related to 
income status. In other words, the phenomenon suggests that the hypothesis that high cancer 
mortality rates in Appalachian region result from to poverty in this region is questionable, for the 
breast cancer at least. 
 

The categories generated by the bivariate 
classification method are easy to visualize and 
understand, and useful in exploring data patterns 
over one or two variables, as well as correlations 
between two variables. In Figure 5, the 
observations (counties) are classified using the 
quantiles classification method. The relationship 
between breast cancer mortality rate and per 
capita income can be explored as a spatial 
pattern. However, only two variables are 
displayed at once. There is no direct method to 
include additional variables into these univariate 
and bivariate representations. Thus, there is no 
direct means to explore the relationships 
between the two displayed variables and any 
other potential risk factors. But, categories 
embedded in the datasets that might explain 
breast cancer mortality are typically not 
determined by only one or two variables, but 

rather they are related to many features or characteristics, for example, other socio-economic 
variables including education, health services and so forth. 
 
A variety of exploratory data analysis tools are implemented in the system, including the 
spreadsheet, parallel coordinate plot (PCP), scatterplot, choropleth map, and matrix of 
scatterplots and/or maps. These exploratory analysis tools contribute to the data visualization and 
analysis from different perspectives. For instance, the spreadsheet can list all of the data in 
numeric format; the PCP shows the values of all of the variables in parallel axes; the scatterplot 
shows values of a pair of variables into an attribute space; and the choropleth map displays 
categories of observations geographically. Since different visualization tools have different 
advantages, we use a combination of several tools to take advantage of the useful features they 
each offer. 
 
There are forty-six variables in this experiment, from mortality rates of various cancers for the 
time period 1070-1994 to social and economic information, such as population, per capita 
income, rent, education, smoking history, obesity, and so forth, for 156 counties in the study 
area. The dataset is quite large in terms of the number of variables and observations (counties). 
The spreadsheet (Figure 6) can list all of the dataset, but it is difficult to find patterns through the 
plain numbers in the table. 

 

 
Figure 5: A choropleth map with categories 
derived from breast cancer mortality rates 
and per capita income. 
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The parallel coordinate plot (PCP) maps the values of each variable to the projected locations 
along the axis representing that particular variable (Figure 7). Patterns or distributions over 
variables can be identified by the positions of polylines, which represent counties in this case. 
Relationships between variables can be identified according to trends in the polylines, for 
example, a parallel polyline trend indicates a positive relationship and a cross trend suggests a 
negative relationship between the two neighbor variables. The polylines between the breast 
cancer mortality rate and the cervical cancer mortality rate in Figure 7 have a cross trend, which 
indicates a negative relationship between them. The trends of polylines can be visually observed 
by users, but the quantitative values of the trends need to be further examined in a detailed view 
of relationships between variables, such as in a scatterplot with a regression line and value (r2) 
calculated. 

 

 
Figure 6: Spreadsheet showing cancer and risk factor data. 

 

 
Figure 7: Cancer and risk factor data shown in a parallel coordinate plot. 
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Furthermore, only a small portion of variables and data samples for counties can be effectively 
displayed at the same time on the screen in spreadsheets and PCPs, even though a scroll bar is 
provided (in the PCP) for users to browse the whole dataset, and the order of variables can be 
changed dynamically. A variable chooser tool is provided so that users can select any 
combination of variables to be displayed in all of the components in the system, and this 
selection can be changed interactively. The combination of the most informative variables, then, 
can be explored and examined together to improve the efficiency and effectiveness of the 
category development process.  
 
In order to explore the mortality rates for breast 
cancer and cervical cancer, and their risk factors, 
subsets of variables can be selected out of forty-
four, using the tool shown in Figure 8. The 
variables shown have standardized names 
inherited from the creators of this dataset 
(National Cancer Institute); they are breast 
cancer rate for white females for time period 
1970-1994 (BRRWFZ), cervical cancer rate for 
white females for time period 1970-1994 
(CERWFZ), cervical cancer mortality rate for all 
ages from 1993 to 1997 (Cer9397Age), breast 
cancer mortality rate for all ages from 1993 to 
1997 (Br9397AgeA), physicians per 1000 
population (MDRATIO), hospitals per 1000 
population (HOSP), hospitals with oncology 
service per 1000 population (hosponc), screening 
mammography facilities per 1000 population 
(scrnmamm), percentage of Hispanic origin (PCTHISP), percentage of urban (pcturban), USDA 
urban/rural code (0=most urban, 9=most rural) (URBRURAL), percentage of households headed 
by female (pctfemhh), per capita income (PCINCOME), percentage of adults over 25 with 4+ 
years of college education (PCTCOLED), unemployment rate (UNEMPLOY), percentage of 
women ages 50-64 who had a mammogram in past 2 years (mammog2ysm), percentage of 
persons ages 18+ who do not have a health plan or health insurance (NOINS), and so forth. This 
dataset was merged from two separate datasets, one of which encodes the variable name in 
capital letters, and the other has names in lower case.  
 
Four out of the thirty chosen variables, i.e., breast mortality and cervical mortality rates, and their 
socio-economic risk factors, are selected for display in a scatterplot and map matrix (Figure 9). 
The visual correlations between each pair of variables can be explored in both attribute space 
(scatterplots) and geographic space (maps). The red lines in the scatterplots are regression lines, 
and correlation and r2 values are displayed at the top of each scatterplot panel. The colors for 
data samples (counties) are determined by the bivariate classification results based on the pair of 
variables displayed in the scatterplot. As before, there are nine color shades, and each represents 
one bivariate category. The counties in light magenta color have relatively high values for the 
variable represented by X-axis and low values for the Y-axis variable. The counties in light green 
have relatively high values for the variable represented by the Y-axis and have low values for the 

 

 
Figure 8: Thirty variables are selected out of 
the whole forty-four variables using the 
dataset in variable chooser tool. 
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corresponding X-axis variable. Counties with relatively high values for both variables are shown 
using a dark gray color and counties with relatively low values for both variables are light gray 
in color, as the bivariate map in Figure 5 shows. Variable names can be found at the top row and 
the left most column. 

The detailed view of the scatterplot for 
cervical cancer and breast cancer rate 
variables is displayed in Figure 10. The 
correlation between these two variables is 
very low at -0.042, but, there is a weak 
negative trend in the scatterplot, which 
indicates that counties with relatively high 
mortality rate for cervical cancer might have 
a lower mortality rate for breast cancer and 
vice versa. 
 
Observing the same pair of counties in a 
choropleth map in detail (Figure 11), the 
geographic locations for counties in different 
categories derived by the bivariate quantiles 
classification are displayed. Counties with 
magenta color, which indicates they have 
relatively high rates in breast cancer 

 
 

Regression Line 
Correlation coefficient r2 value 

Bimodal 
distribution 

 
Figure 9: Scatterplot and map matrix displaying four variables. 

 

 
Figure 10: A scatterplot with variables breast 

cancer rate and cervical cancer rate. 
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mortality and low rates in cervical cancer mortality, are mostly clustered in Pennsylvania. 
Counties with light green color, which means they have relatively high rates in cervical cancer 
mortality and low rates in breast cancer mortality, are mostly in West Virginia and Kentucky.  
 

In the scatterplot and map matrix in Figure 9, 
pair-wise relationships can be observed and 
spatial patterns for pairs of variables can be 
identified. There is a relatively strong positive 
correlation (0.265) between cervical cancer 
mortality rate and the percentage of 
households with a female head. In the 
scatterplot, plotting this variable against 
cervical cancer mortality rate (Figure 9), an 
increase in percentage of female head 
household, predicts an increase in cervical 
cancer mortality rate. In other words, there is a 
visually significant trend that the counties with 
a relatively high percentage of a female head 
of household show a high cervical cancer 
mortality rate. Geographically, counties with 
high values in both cervical cancer rate and 
percentage of female head of household cluster 
in West Virginia and Kentucky. 
 

Apparently, the female head of household variable is negatively correlated with per capita 
income. Therefore, it is logical that the cervical cancer mortality rate decreases as per capita 
income increases. Counties with high per capita income and low cervical cancer mortality rate 
are mostly located in Pennsylvania and conversely, those with low per capita income and high 
cervical cancer mortality rate are clustered in West Virginia and Kentucky. 
 
By contrast to cervical cancer mortality rate, breast cancer mortality rate shows a weak trend 
positively correlated with income, though statistically no strong correlation can be proved 
between these two variables. The counties with high breast cancer mortality rate and high 
income are mostly in Pennsylvania (the counties marked in dark gray or mid magenta in the 
choropleth map at the intersection of variables Br9397AgeA and pcincome, Figure 9). Breast 
cancer mortality rate is not correlated with percentage of female head of household, since the 
corresponding regression line in the scatterplot is almost horizontal, and the correlation 
coefficient for these two variables is close to zero. 
 
As discussed in the above section, there is only weak positive correlation between per capita 
income and breast cancer mortality rate, and between the cervical cancer mortality rate and 
breast cancer mortality rate for the entire study region as a whole. However, there are obvious 
spatial patterns for the cancer mortality rates and two risk factor variables, such that counties 
with high breast cancer mortality rate and per capita income are clustered in Pennsylvania, and 
counties with relative high cervical mortality rate and high percentage of female head household 
are mostly in Kentucky and West Virginia. Examining only the sub region with those counties 

 
 

 
Figure 11: Choropleth map with counties 
divided into nine categories according to 
quantiles classification on each of the two 
variables 
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having high rate in cervical cancer mortality, the relationship between per capita income and 
breast cancer mortality rate provides a different trend (the red regression line) from that of the 
region as a whole (the gray regression line) (Figure 12). The counties in the sub region can be 
highlighted easily by dragging a box around these counties in the scatterplot of cervical cancer 
and breast cancer mortality rate (the dashed box in Figure 12). And this selected subset of 
counties can be passed to other visualization tools, such as maps, so that the geographical 
locations for these counties are highlighted too. For these counties, breast cancer mortality rate 
decreases quickly with increase of per capita income as displayed in the scatterplot of breast 
cancer mortality rate and per capita income, where the solid dots represent those counties with 
high cervical cancer mortality rate and the red line is the regression line for only the counties 
selected. We see now that the correlation coefficient between breast cancer mortality rate and per 
capita income changes from +0.071 to –0.256. This illustrates an important point, that selected 
data can exhibit different patterns from those observed across all the counties, and the tools 
described here allow us to quickly create and test such subsets. Among the counties with high 
cervical cancer mortality rate, the counties with high per capita income have a lower likelihood 
of high breast cancer mortality. 

 
 

Drag a box by 
mouse to select 
counties in the 
map. 

Geographical 
locations 
highlighted too 

 
Figure 12: Scatterplot and map matrix displaying subset of counties with high 

cervical cancer rate selected. 

Notice also that the regression lines in scatterplots are useful tools to summarize the relationships 
between two variables, especially the direction and strength of the trends, i.e., positive or 
negative correlations between them. The regression lines for the selected subset of counties are 
generated dynamically, as subset selected. The relationships between pair-wise variables for 
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subsets of counties can be observed in both attribute and geographical space, thus, the variations 
among subsets or sub regions can be identified. 
 
From Figure 4, spatial patterns are observed in 
Pennsylvania with counties having both high per 
capita income and breast cancer mortality rates. 
These counties are selected for the following 
exploration in geographical space by simply 
dragging a box, which covers all of the counties in 
Pennsylvania, in the choropleth map (Figure 13). 
 
The relationship between per capita income and 
breast cancer mortality rate changes dramatically 
and shows an opposite positive trend, (Figure 14, 
Figure 15) from that for the subset of counties 
having high cervical cancer mortality rate 
(Figure 12, Figure 16). There is now a fairly 
strong positive correlation, with the correlation 
coefficient at 0.4252, between breast cancer 
mortality rate and per capita income among the 
counties in Pennsylvania (Figure 14, Figure 15). In 
other words, in Pennsylvania, the counties with 
high per capita income are likely to also have a high breast cancer mortality rate. By contrast, 
counties with high cervical cancer mortality rate demonstrate a negative relationship, between 
breast cancer mortality rate and per capita income, with correlation coefficient at –0.256 
(Figure 9, Figure 16). The difference between the relationships of breast cancer mortality rate 
and per capita income among different sub regions of the study area indicates that additional risk 
factors in these sub regions may be different. 

 
 

Drag a box by 
mouse to select 
counties in the map. 

 
Figure 13: Counties in Pennsylvania are 

selected. 
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Figure 14: Scatterplot and map matrix with counties in Pennsylvania selected. 

 

 
Figure 15: Scatterplot for variables per 
capita income and breast cancer mortality 
rate with counties in Pennsylvania selected. 
The red line is the regression line for 
selected counties, and the gray line is for all 
counties. 

 

 
Figure 16: Scatterplot for variables per capita 
income and breast cancer mortality rate with 
counties having high cervical cancer rate 
selected. The red line is the regression line 
for selected counties. 
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In contrast to breast cancer, the cervical cancer mortality rate for those Pennsylvania counties 
does not appear to be correlated with income (Figure 17), which is also different from the 
previous observation, where cervical cancer mortality rates are negatively correlated with income 
visually (Figure 12). 
 

Relationships between cancer mortality rates 
and other risk factors can be explored to 
show that there is a fairly strong positive 
correlation between breast cancer mortality 
rate and percentage of adults with college 
education, and most of the counties with 
high breast cancer mortality rate and high 
percentage of population with college 
education are in Pennsylvania (Figure 18). 
This phenomenon conforms to the previous 
observation that breast cancer mortality rate 
is positively correlated with income, since 
people with a college degree usually have a 
higher income. The negative correlations 
between breast mortality rate and percentage 
of population below poverty line, and 
unemployment tell the same story that, 
generally, people with higher economic 
status have a higher probability of 
developing breast cancer. In contrast to 
breast cancer, cervical cancer mortality rate 
is negatively correlated with economic status  

that counties with high mortality rate usually have high unemployment, high percentage of 
population below poverty line, and low percentage of population with college education, and 
these counties are mostly in Kentucky and West Virginia (Figure 19). 

 

 
Figure 17: Scatterplot for variables per capita 
income and cervical cancer rate with counties in 
Pennsylvania selected. The red line is the 
regression line for selected counties, and the 
gray line is the regression line for all counties. 

 

Figure 20: The map and scatterplot matrix with the display of breast cancer mortality rate for 
white females during the time period 1970-1994, and hospital to population rate, percentage of 
urban, percentage of population below poverty line, percentage of adults with college education, 
and unemployment rate, % of persons ages 18+ who are >120% of the median body mass index, 
and % of persons ages 18+ who do not have a health plan or health insurance. 
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4.3 Discussion 
Exploration of the data, classification, and hypotheses surrounding cancer mortality rates and 
socio-economic status illustrate that there are visually significant spatial patterns in the mortality 
rates for both types of cancer, as well as correlations between cancer rates and socio-economic 
factors, in the study area. Cervical cancer mortality rate appears negatively correlated with 
economic status. Breast cancer mortality rate has little or no correlation with income when 
considering the entire study area as a whole. 
 
The relationships between cancer mortality rates and socio-economic factors also display spatial 
patterns. Cervical cancer and breast cancer mortality rates have negative relationships with 
socio-economic status, especially per capita income, in counties in West Virginia and Kentucky. 
This factor confirms the suggested hypothesis that poverty, in general, has an adverse effect on 
cancer mortality rates. The cervical cancer mortality rate does not vary with increase of per 
capita income for counties with relatively high income. This phenomenon indicates that cervical 
cancer rate will not increase after the economic status achieves a certain level. 
 
Breast cancer mortality rate is positively correlated with socio-economic factors, including per 
capita income and education, in Pennsylvania, where counties have relatively high economic 
status. This phenomenon indicates that different cancers can be influenced by, or related to, 
different risk factors in the study area, and the same cancer can also have different major risk 
factors or relationships with socio-economic status in different sub regions. For the counties in 
Pennsylvania, the relationship between breast cancer mortality rate and socio-economic status is 
different from the counties in the other sub regions of Appalachia. The biological factor, that 
women with higher socio-economic status tend to have fewer children and give birth to their first 
child at later ages increases the incidence of breast cancer, and overwhelms the increased risk 
due to poverty. Those women usually have a college education and high income. The 
relationships retain visually significance, though they are not proven statistically with strong 
correction coefficients and high r2 values. Nevertheless, with more data over a longer time 
period, the positive correlation may be established as significant. 
 

Figure 21: The map and scatterplot matrix with the display of cervical cancer mortality rate for 
white females during the time period 1970-1994, and hospital to population rate, percentage of 
urban, percentage of population below poverty line, percentage of adults with college education, 
and unemployment rate, % of persons ages 18+ who are >120% of the median body mass index, 
and % of persons ages 18+ who do not have a health plan or health insurance. 
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The different risk factors associated with different cancers within the study area could be 
overlooked if we view the study area as a single region, because the contradictory relationships 
in different subsets of counties are averaged, and the relationships, which indicate the local risk 
factors for cancer mortality rates, are lost in the analysis. 
 
As a result of these data explorations, a new concept map showing relationships between cancer 
mortality rates and social economic status is suggested (Figure 22). The initial concept map 
(Figure 1), based on the hypothesis that high cancer mortality rates are associated with poor 
socio-economic status in the Appalachian region, is revised. It is true that the mortality rate for 
cervical cancer is negatively correlated with socio-economic variables, such as income and 
education, and positively correlated with percentage of population below the poverty line and 
unemployment rate The general hypothesis that cancer mortality rates show negative 
relationships to socio-economic status is questionable, and seems to be an oversimplification 
when considering the breast cancer case, since they show some positive correlation with socio-
economic status. The risk factor of access to health service is also removed in the revised 
concept map, since the variables such as physician to population ratio, hospital to population 
ratio and insurance do not have obvious correlations with cancer mortality rates. 
 

 
Figure 22: New concepts generated according to the analysis in the integrated system. 

 
5. Conclusion and Future Works 
The case study demonstrates that the system can help to explore the relationships between 
cancers and their risk factors by providing interactive data visualization and classification 
methods for data and category exploration. The human conceptualization of the relationships 
between cancers and risk factors can then be revised via the progress of data exploration. 
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Selecting subsets of counties in attribute space (scatterplots, PCP) or geographical space 
(choropleth maps) is an important and useful function to explore counties within ‘interesting’ 
clusters. The linked brushing function can help to highlight the selected subsets of counties in 
other connected visualization tools, so that these subsets can be explored in multiple views. The 
operation of selection is so simple in the system that users only need to use the mouse to drag a 
box around the observations (counties), which they want to select. However, this simple method 
to sometimes cannot handle some more complex situations easily. If the observations (counties) 
to be select do not fall in a uniform rectangular area in some display (e.g. scatterplots or maps), 
selection can be more difficult. Multiple selections, by holding the “Shift” key while selecting 
counties, is provided in the tools, but it is a tedious procedure and requires a careful and patient 
approach. A function to select such groups of records, whether counties in a class or state, or 
some other units comprised of several composing members is desirable in future development. 
 
Regression analysis is an effective method to explore the relationships between variables. In 
particular, the dynamic visualization of regression lines for the whole study area or the subset of 
data samples allows users to compare relationships between variables for the whole study area, 
with the variations among the sub regions. The regression analysis implemented in the research 
is linear, whereas several different distributional forms have been encountered in the analysis 
described here. For example, a bimodal distribution would be better represented by a nonlinear 
regression, such as the distribution for per capita income in Figure 9, and there are clearly some 
variables that are gathered on the nominal and ordinal scales, for which non-parametric statistical 
summaries would be both more valid and more useful.  
 
The visualization tools in the system support detections of outliers, and allow the exclusion of 
outliers in data analysis by linked brushing and change of data extension in scatterplots. 
However, the dataset underlying the visual analysis remains the same, because the data structure 
in the system does not easily support deletion on outliers from the dataset. Hence, the outliers 
still remain in the analysis unless they are deleted by some separate method outside of the system 
described. In addition, the data structure in the system cannot support the direct creation of new 
variables derived from existing variables, such as statistical z scores used for standardizing 
variables (though they can be calculated as required. A more flexible data structure is needed to 
support the above functions in the future. 
 
In future work we will concentrate on improving the usability of the tools, making the 
connections between the concept map and the exploration components more naturally, and 
developing new visualization and classification tools as alternative to take advantages of 
different methods. The software to support this research is implemented as a series of visual and 
computational components that are all connected into a workflow design supporting direct 
interaction between components using GeoVISTA Studio (http://www.geovistastudio.psu.edu, 
Gahegan et al., 2002). 
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