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Abstract 
"Digital Populations" research explores the question, "Can the use of publicly 
available United States Census Bureau data and publicly available land cover data 
generate models of simulated households in the US that are useful for performing 
cluster detection analysis in medical geography?" Digital Populations is useful in 
situations where researchers desire uncertainty estimates of an application 
requiring US Census Short Form Data, which is commonly available in most GIS 
at the census block level. Version 1.0 of Digital Populations was developed to 
represent population data as individual households located in geographic space 
mimicking census attributes’ first-order properties. Digital Populations uses 
Monte Carlo simulation to represent uncertainties of the data model by creating 
hundreds or thousands of possible population realities. Digital Populations also 
identifies statistically significant clusters with results similar to software such as 
SaTScan or ClusterSeer. This paper discusses Digital Populations version 2.0. 
Digital Populations 2.0 allows population or household attributes to mimic first-  
and second-order properties. Digital Populations 2.0 introduces a technique to 
estimate census attributes’ second-order properties from Digital Populations 1.0 
results for when survey data is unavailable to represent second-order properties. 

 
 
1. Introduction 
Digital Populations is an ongoing research project attempting to quantify the uncertainty of 
US Census data, especially the spatially explicit Short Form data commonly used in GIS 
applications. The term Digital Populations was used for this research as both a reference to 
"The Digital City," a series of conferences with the goal of forming a more structured 
presentation of urban space (Craglia, 2004), and an indication that realizations are done at the 
state level. Traditional measures of US Census data quality have focused on sampling 
technique errors. However, these measures cannot be easily used to determine whether US 
Census data can be useful for a particular application. In order to quantify the utility of 
spatial data for a particular application, researchers often employ Monte Carlo simulation 
(MCS). MCS requires hundreds or thousands of realizations of each input data layer with the 
application repeatedly run for each version of the input data layers (Heuvelink, 1998). 
Ideally, all knowledge of potential data errors is incorporated into the model that generates 
the data layer realizations.  



 
The simplest implementation of US Census Short Form multiple realizations would be to 
generate multiple attribute tables with varying enumerations of population counts for each 
census block. However, multiple attribute tables would not account for the uncertainty of 
population location from aggregated data. Thus, Digital Populations took a more complex 
approach by representing every person and household with a separate location in each 
realization. If the locations in each realization are an accurate representation of possible 
households, GIS operations could be used that could potentially be more precise than was 
previously available. Thus, any urban agent-based application can easily represent the data 
model uncertainty by repeatedly running the application on all Digital Populations 
realizations. More traditional GIS applications relying on data aggregated to polygons would 
require separate functions that manipulate point based data layers or functions that rebuild 
polygon attribute tables from the point data. It is interesting to note that data distributed as a 
set of point layers ensures it is easy to aggregate the data to any choropleth scheme. For 
example, building attribute tables for zip code, city and township, or county boundaries 
would not add uncertainty nor potentially corrupt the data in any way. 
 
The model Digital Populations uses to locate potential household locations is a conflation  
model (Cobb et al., 1998), and also known as data fusion (Wald, 1999). Conflation is the 
process by which multiple data layers are combined in order to generate a product containing 
the best aspects of each layer. Digital Populations uses publicly available United States 
Census Bureau data and publicly available land cover data to generate models of simulated 
households in the US. The land cover data is the National Land Cover Dataset (NLCD) and 
is a good example of conflation at work. NLCD uses Landsat images, census data, and road 
layers to better classify land use in the United States. Version 1.0 of Digital Populations was 
developed to represent population data as individual households located in geographic space 
mimicking census attributes’ first-order properties (Ehlschlaeger, 2004).  
 
In order to demonstrate the utility of point based census data realizations, Digital Populations 
identifies statistically significant clusters with results similar to software such as SaTScan or 
ClusterSeer. (In the medical community, significant clusters are known as “hotspots.”) 
Identifying hotspots requires a measure of the significance of each hotspot. Significance, 
when measured as a P-value, is a form of uncertainty estimate. For example, a P-value of 
0.001 indicates that only one time in a 1,000 will something measured be inaccurate. 
Accurate P-values require the uncertainty of the input data to be understood.  
 
This paper discusses Digital Populations version 2.0. Digital Populations 2.0 allows 
population or household attributes to mimic first- and second-order properties. Although field 
surveys would probably provide superior second-order property estimates, Digital 
Populations 2.0 introduces a technique to estimate census attributes’ second-order properties 
from Digital Populations 1.0 results.  Section two reviews issues of US Census data relevant 
to cluster mapping and this research. Section three will provide a background on hotspot 
mapping. Section four covers the methodology behind Digital Populations version 2.0. 
Section five discusses a Digital Populations case study using Rhode Island data and a sub 
population with a simulated disease. It will also compare the results against Kulldorff's 



Spatial Scan statistic. Finally, section six will discuss this research and issues that must be 
overcome before Digital Populations becomes 
 
2. Brief review of US Census data  
This section provides a brief summary of US Census data as it relates to this research. After a 
discussion on the types of products is available from the US Census Bureau, this section 
clarifies which data products have the greatest potential for developing Digital Populations. 
 
There are multiple data products from the US Census. They come from three sources: 1) the 
Decennial Short Form questionnaire, 2) the Decennial Long Form questionnaire, and 3) the 
American Community Survey phone survey. All three sources collect information at the 
household level. They contains brief questions for each person in the household about 
gender, age, nine categories of race plus “other,” and relationship to 1st person in household, 
as well as the type of dwelling.  
 
The first two sources, the Decennial Short Form questionnaire and the Decennial Long Form 
questionnaire, are descriptively named after the forms and are delivered every 10 years. On 
April 1, 2000, very household in the US was to receive Form d61a. Form d61a only contains 
the questions described above and is the foundation of most demographic data used in GIS in 
the US. GIS users see this data as census blocks described as polygons with attribute tables 
containing the enumeration of various age groups, gender, and race. Summary File One  
(SF1) (US Census, 2002) and Summary File Two (US Census, 2002b) data products use the 
information from the Decennial Short Form questions.  
 
On April 1, 2000, one in six households in the US was to receive the Decennial Long Form 
questionnaire. Summary File Three (SF3) (US Census, 2002c), Summary File Four (US 
Census, 2002d), and the Public Use Microdata Sample (PUMS) (US Census, 2003) use data 
from the Long Form questionnaire. All three Long Form data products provide information 
in the form of two tables: The household table contains detailed information such as number 
of rooms as well as bedrooms, year moved into, occupants per room, year structure built, 
expenses, plumbing and kitchen facilities, vehicles available, value of home, monthly rent 
and more. In addition to the variables available in SF1 and other Short Form data products, 
the population table contains detailed information such as marital status, whether 
grandparents are caregivers, language and ability to speak English, ancestry, place of birth, 
citizenship and veteran status, place of work and commuting distances, educational 
attainment, disability, income, employment status and poverty status and others. The data in 
SF3, SF4, and PUMS are presented in the form of “typical” households and “typical” 
population members. The tabular nature of the data is contusive to SQL queries. The 
following query, for example, would determine the proportion of people living in a state that 
were veterans, disabled, and over the age of 65 on April 1, 2000: 
 
Select all from SF3p where AGE > 65 AND VETERAN_STATUS = true AND DISABILITY_STATUS = true 
 
 
 



The third source of public available demographic data is from the American Community 
Survey (ACS) phone questionnaire (US Congress, 2001b). ACS phone surveys are done 
every year with a data product similar to PUMS. While several researchers have scoffed at 
ACS’s sampling methodology, there are inherent advantages to annual surveys, especially in 
rapidly changing neighborhoods. As Goldstein et al. (2004) and many others have discussed, 
uncertainty increases with the difference in time between a sample and for when data is 
needed. ACS’s sampling methodology does reduce its utility for SQL commands to 
determine the proper proportion of population or household variables. Using 2000 SF1 and 
ACS data for Rhode Island, SF1 indicates there are 155,423 people with ages from 50-64. A 
query of ACS data would indicate 176,300 people in that age bracket. The same is true for 
occupied households, SF1 has 31,413 while ACS has 23,100. 
 
Of the various US Census data products, SF1 and ACS provide the most useful information 
in a Digital Populations environment. While ACS data doesn’t weight the sampling of 
households and population against the SF1 like SF3 does (US Census, 2002c), the annual 
surveys reduce the uncertainty that neighborhoods will be misrepresented. Digital 
Populations conflates SF1 and ACS data together and provides a mechanism to weight SF1 
proportions to ACS proportions based on how much confidence the user has in each product. 
 
3. Recent research on hotspot mapping  
The section discusses hot spot mapping as it relates to the medical community and the 
conditions under which US Census and Digital Populations data is used for this purpose. 
 
In order to work properly, typical cluster detection algorithms require two components: 1) 
events or cases of interest (some illness), and 2) the population, usually people that could 
potentially become an event. It might normally be the case that the entire population of 
people is  susceptible to the illness. However, many illnesses will only affect a subset of the 
population. Or it is the case that researchers are interested in looking at clustering patterns of 
high risk subpopulations. For these situations, it is often easier to create the event data than 
the population data. For example, medical researchers can usually get access to the events for 
a disease serious enough to require medical care. It is far more difficult to get an accurate and 
precise enumeration of a target population in countries without universal health care.  
 
In this research’s case study, the goal was to determine whether some areas of Rhode Island 
were not getting proper medical care for the early detection of breast cancer in the population 
of older African-American women.  If the enumeration of older African-American women 
were available at the census block level of aggregation, standard cluster detection software 
such as SaTScan (Jemal et al., 2002) would be used locate potential clusters. Cancer 
researchers with access to late-stage breast cancer medical records could find all 40-64 year 
old African-American women with the disease, geocode their addresses, and aggregate those 
points to census tracks. SaTScan would then take the late-stage breast cancer data, the 
population of older African-American women, and the centroids of census blocks and 
perform its spatial scan statistic. SaTScan’s spatial scan statistic uses a procedure similar to 
the geographical analysis machine (GAM) (Openshaw et al., 1987).  
 



GAM determines the P-Value of a potential cluster by creating 100’s or 1000’s of possible 
patterns of events by giving each member of the population a chance of being an event. 
GAM then generates circular regions of varying sizes throughout the study region. Each 
circular region is considered to be a potential cluster. GAM compares the actual number of 
events against each of the possible patterns of events to determine the P-Value of that 
potential cluster. For example, if 999 possible patterns of events were generated for a 
potential cluster and there were three of patterns with as many or most events than the actual 
events, the P-Value would be (1+3)/(1+999) or 0.001.  
 
SaTScan, in addition to generating a P-Value for potential clusters, uses the binomial or 
Poisson model to determine which potential cluster have “the minimum likelihood for 
random occurrence” (Kulldorff, 2004). The Poisson’s minimum likelihood function is: 
 

k = (c / n)c([C-c]/[C-n])(C-c)     (1) 
 
where k is minimum likelihood function, n is covariate adjusted expected cases in the 
potential cluster, C is global number of events, and c is the number of cases in the potential 
cluster. SaTScan keeps a record of the most extreme potential clusters allowing while 
discarding potential clusters that overlap more extreme clusters. O’Sullivan & Unwin (2003) 
provides an excellent overview of GAM and the mathematics behind SaTScan. 
 
However US Census data is not always easily incorporated into an analysis. There are two 
potential issues. First, significant proportions of Americans declare themselves to be multi-
race, making the race, age, and gender in SF1 less accurate. The ecological fallacy problem 
makes it difficult to get an accurate count of any subpopulation not explicitly enumerated. 
Detailed enumeration of exclusive race, age, and gender is aggregated to the census block 
group in Census Short Form tables. Because of ecological fallacy, it would be impossible to 
determine how many 40-64 year old African-American women live in a census block if we 
only have the enumeration of blacks and women of certain ages. (One cannot assume that 25 
older African-American women live in a census block with a population of 100 that contains 
50 African-Americans, and 50 older women.) Second, Short Form data is tabulated only 
every ten years. The population of many parts of the United States, neighborhoods catering to 
recent immigrants in New York City for example, experience massive turnover in only a few 
years.   
 
Ecological fallacy and time between surveys represents two major issues covered by Digital 
Populations. Digital Populations also creates a model that represents what the actual 
distribution of the population might be. The next section discusses Digital Populations 
methodology. 
 
4. Digital Populations methodology  
GAM and SaTScan’s use of multiple realizations of random events in order to estimate P-
Value meshes nicely into the Monte Carlo simulation (MCS) approach for uncertainty 
analysis. Digital Populations has two conceptual algorithms. 1) Generating multiple 
realizations of potential household location, discussed in Section 4.1, and 2) Identifying 
potential clusters that have the minimum likelihood of being a random event (Section 4.2). 



 
4.1 Conflating land cover and census data  
Digital Populations uses a technique for spatially locating realizations of households in the 
U.S. by conflating Short Form (SF1) tables, American Community Survey (ACS) tables, and 
National Land Cover Data (NLCD). Since ACS tables cover entire states, Digital Populations 
must be created state by state. There is a three step process for generating Digital 
Populations: 1) Identify the heterogeneous probability function for the study area. 2) 
Determine how many realizations of each ACS household needs to exist to mimic SF1 data 
for each Digital Populations realization. 3) Spatially locate realized ACS households in the 
study area. 
 
4.1.1 Digital Populations heterogeneous probability function 
There are three levels of complexity when generating point patterns that mimic real world 
processes: 1) homogeneous Poisson processes, 2) heterogeneous Poisson processes, and 3) 
Cox processes (Bailey & Gatrell, 1995).  
 
Homogeneous Poisson processes assume that an object is equally likely to be located at any 
point in the study as any other. If we were to ignore population information and only study 
event locations, we could find clusters of events denser than in other areas. However, most 
clusters will only exist because the events occurred in densely populated areas and events are 
likely distributed by chance.  
 
Heterogeneous Poisson processes recognize that different parts of the study area have 
different likelihoods of containing events. SaTScan conceptually assumes a heterogeneous 
Poisson process since different census blocks will have different population densities. 
However, since census blocks are identified solely as centroids, it is impossible to discover 
small diameter cluster. Digital Populations version 1.0 fully implements a heterogeneous 
Poisson process. Within each census block, Digital Populations assumes each NLCD land 
cover class has a different density function.  
 
Digital Population version 2.0 has a Cox process approach. The location of Digital 
Populations version 2.0 ACS households are determined both by the density function defined 
by census block density, the relative density of different NLCD land cover classes, and the 
location of ACS households with similar attributes. For example, some neighborhoods have 
an older population than others because many older people prefer to live near other older 
people. The same is generally true for race. Digital Populations version 2.0 realization 
process is described in Section 4.1.3. 
 
Iterative regression analysis of SF1 and NLCD at the census block level determines the 
relative household density of different NLCD land cover classes. The process is iterative 
because the regression analysis will determine that some NLCD land cover class will have 
negative density when the entire set of land cover is used. Land cover classes with negative 
density are removed from consideration and the regression analysis is performed until all 
classes have positive density. The regression analysis is shown in equation 2: 
 

hi = SUMk(dk ckj) + ei      (2) 



 
Where hi is number households in SF area i, dk is relative household density in NLCD class 
k, ckj is area of NLCD class k in SF1 area i, and ei is error of SF area i. 
 
4.1.2 Digital Populations conflation of disparate SF1 and ACS variables 
As mentioned in Section 2, SF1 and ACS variables do not have the same values. Using 2000 
SF1 and ACS data for Rhode Island, SF1 indicates there are 46,908 blacks. A query of ACS 
data would indicate 25,500 blacks. Since PUMS and ACS are sampled households, there is 
no compelling reason to create 100 households simply because the table is a 1% 
representation of the population. For example, since the number of ACE households for 
Rhode Island under represents blacks, there should be more than 100 copies of an ACS 
household containing blacks than ACS households without blacks. 
 
For each new household in a realization, Digital Populations first picks 10 potential 
households that will “improve the fit” of the important SF1 variables. In the case study, the 
important variables are gender, black race, and people with ages from 40 to 64. Digital 
Populations then determines which of these potential households will more closely maintain 
the proportion of important SF1 variables should that household be selected. This algorithm 
is sensitive to the number of households already realized earlier in the process. Digital 
Populations uses a least squared error approach for both attempting to realization 100 1% 
ACS households and the exact number of SF1 variables. Users can determine a greater 
weight on SF1 variables while virtually ignoring ACS household counts or visa versa. 
Obviously, if the application is for a year when the US Census was done, users should place 
greater weight on the SF1 variables. However, if the application year is far removed from an 
actual census, it might be better to add greater weight to the ACS household counts. This step 
greatly diminishes the sampling methodology drawback to the ACS. This process is 
iteratively performed until the SF1 is fully enumerated. 
 
4.1.3 Spatially realizing ACS households  conditionally with a Cox Process 
At this stage of the Digital Populations process, ACS households are placed within the study 
area. There is a three step process in to generate a realization with Digital Populations 
version 2.0: 1) ACS households are randomly located throughout the state with a 
heterogeneous Poisson process. 2) ACS households that contain population members that 
could be events are then searched to find those closest to known events. These ACS 
households are then shifted to the event locations. 3) ACS households are stochastically 
shifted to different census blocks if the shift will cause a better fit to the important SF1 
attributes. 
 
ACS households are randomly located throughout the state with a heterogeneous Poisson 
distribution algorithm using household density that fits any number of SF1 variables' first-
order properties. It is probably best to only fits SF1 variables relevant to target population. In 
experiments so far, SF1 variables were almost always exactly matched when three or fewer 
SF1 variables were fit. Fitting six or more SF1 variables inevitably caused some SF1 
variables to be poorly fit. (This was expected as similar results occurred in other algorithms 
recreating multiple statistics (Ehlschlaeger, 2002). At this stage of the realization process, 
each NLCD land cover class in each census block has a uniform household density. For 



example, all multi- family housing within a census block will have the same density. This 
might cause minor misrepresentations in the final product should all the housing on the north 
side of a census block be tall buildings while multi- family housing on the census block's 
south side are single story. If positive spatial autocorrelation of housing density exists, 
Digital Populations’ first-order heterogeneous Poisson distribution realizer would not capture 
that phenomenon. 
 
To correct for a uniform household density, the variogram for specific SF1 variables is fitted. 
If the range of the second-order property’s variogram was large enough, Digital Populations 
version 2.0 would typically cluster more households within a census block towards nearby 
census blocks with higher density. This will convert the uniform household density function 
to something with a topography more similar to (and more realistic than) Tobler et al's (1979) 
pycnophylactic method. Results would be more realistic than the pycnophylactic method at 
distances shorter than the range, because Digital Populations 2.0’s realizer will create varying 
population densities within census blocks. Digital Populations 2.0’s second-order interpolator 
uses data from ACS households and SF1 tables to estimate a variogram. The variogram’s 
nugget is the variance of the American Community Survey population attribute within 
households. Variogram lags with distances greater than typical subdivisions can be 
determined by measuring Digital Populations 1.0 realizations.  
 
While Digital Populations 1.0 only demonstrated a first-order heterogeneous Poisson 
distribution realizer, this research demonstrates how sampling of second-order properties of 
race, and/or other SF1 variables would provide better distribution results. ACS households 
and ACS derived Short Form tables in Digital Populations keeps the population more up-to-
date than the once in ten years traditional SF1 data. Finally, distributing American 
Community Survey households over land use maps reduces the errors caused by aggregating 
census block information to that block's center. 
 
4.2 Hotspot mapping accounting for uncertainty 
 
The Monte Carlo cluster detection algorithm is conceptually similar to Openshaw's (1987) 
Geographical Analysis Machine. A regular lattice is laid across the study area. Each lattice 
point is the center of kernel functions with varying diameters. Householders are weighted by 
distance to the lattice point. For each kerne l function, the proportion of events against 
population is compared against hundreds or thousands of realized Digital Populations with 
simulated events to determine a P-value and minimum likelihood of randomness function 
value similar to Kulldorff's Spatial Scan statistic (Jemal et al. 2002). Since popular cluster 
detection techniques such as Kulldorff's Spatial Scan statistic already use Monte Carlo 
simulation to represent the P-value of unlikely event clusters, this methodology provides an 
efficient potential solution to the ecological fallacy problem as well as a more accurate 
representation of the maximum likelihood function. 
 
There are two differences between the mathematics behind Digital Population’s spatial scan 
statistic and Kulldorff’s spatial scan statistic:  
 



1) Digital Populations’ equation must account for the varying population numbers within a 
potential cluster. Digital Populations’ minimum likelihood function is: 
 

k = (c / n)c([C-c]/[C-n])(C-c)     (3) 
 
where k is minimum likelihood function, n is the average covariate adjusted expected cases 
in the potential cluster across all realizations, C is global number of events, and c is the 
number of cases in the potential cluster. 
 
2) Digital Populations allows for the use of kernel function to define a potential cluster. Ergo 
the variable c is no longer an integer, and both variables c and n are adjusted based on the 
distance to the center of the potential cluster. Ergo, events and non events at the edge of a 
potential cluster have much less weight than events and non events at the center of a potential 
cluster. 
 
5. Case study results 
This section compares the results from Digital Populations against an analysis done with the 
appropriate data using SaTScan. The case study used simulated data of older African-
American women with late stage breast cancer in Rhode Island for the year 2000. The 
analysis was done at the census tract level instead of census block to more easily see result 
patterns. Digital Populations was able to take advantage of the exact locations of the 
simulated events while the simulated events were aggregated to census tracts for use in 
SaTScan. 
 
Digital Populations took over a month of computer time to generate 250 realizations of 
alternative breast cancer and population realizations on a 3.2 MHz Pentium IV computer. 
SaTScan performed its analysis in seconds. However, SaTScan was unable to find the two 
most “unlikely to be random” Digital Populations clusters in Rhode Island. Both were 
smaller clusters that were diffused by the census  tract aggregation. The most extreme Digital 
Populations cluster was part of SaTScan’s 110th most extreme cluster with an insignificant P-
Value. These results were mainly caused by the heterogeneous Poisson ACS household 
realizer. 
 
6. Conclusion and discussion 
While Digital Populations shows the potential for providing much superior results than 
traditional spatial scan statistics, there are many techniques that can improve the quality of 
Digital Populations. The most important technique that needs to be implemented is the 
preconstruction of Digital Populations realizations. While it took a month to build the 
realizations, Digital Populations’ q-tree implementation of its spatial scan statistic generated 
results within minutes. Digital Populations will only become a useful product if the 
household realizations are pre-built with algorithms to conditionally fit event data and better 
fit relevant SF1 variables when needed. Accuracy and uncertainty issues are also a critical 
area for improvement. 
 
Here is a list of model improvements those that would improve the uncertainty analysis 
capabilities of Digital Populations. 



 
• Improve population density 1st order properties: Instead of locating individual 

households, locate multi-unit housing as single locations in proportion to ACS Units 
in Structure (BLD).  

• Improve population density 2nd order properties: 2nd order properties are modeled by 
semi-variogram in Digital Populations’ software. Variogram lags are normally 
determined by distance. Instead, lags could be based on household order. This way, 
2nd order properties in high density areas will not overwhelm the modeling of 2nd 
order properties in low density areas. 

• The regression of raw NLCD classes is not best measure of relative household 
density. For example, open water has positive household density. Digital Populations 
versions 1.0 and 2.0 automatically excluded open water from the regression analysis. 
Also, orchards have VERY high household density. Did the NLCD classify migrant 
worker housing as part of the orchard class? Or, does land near orchards have higher 
household density? One possible solution would be to model each NLCD grid cell as 
a vector of distances to closest cell of each NLCD class. The regression analysis 
would then solve for each NLCD land cover class’s distance decay formula. 

• So far, Digital Populations has treated SF1 as accurate. Uncertainty in SF1 data is 
well known, but not well quantified. Theoretical research is necessary to best 
determine ways of realizing SF1 uncertainty. Currently, the US Census samples SF1 
errors by region. These error samples are reported (US Congress, 2001), however, it 
would difficult and somewhat arbitrary to use these reports to build an uncertainty 
model. In one tries, they would probably assume a normal distribution of errors and 
apply uncertainty modeling to create realizations of SF1 variable enumerations. 

• Realizing land use and land cover uncertainty (Ehlschlaeger & Goodchild, 1994; 
Ehlschlaeger, 2000). Each Digital Populations realization would get its own land use 
map accounting for uncertainty of NLCD. The regression analysis determining 
relative land cover density would need to be rerun for each realization. This stage of 
the Digital Populations process only takes seconds while generating realizations is 
many times more computationally expensive. 

 
Browsing through the list of possible improvements above, it is easy to realize that Digital 
Populations could easily become an extremely complicated model. As anyone who has 
researched uncertainty analysis should know, a data uncertainty model may be as simple or 
complex as the designer wishes. Scientists usually try to determine the simplest model to 
explain a phenomenon. This approach used in uncertainty modeling will often generate 
realizations that have little to no chance of being an actual representation of reality. 
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