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Abstract 
Identifying occurrences of objects of interest in a remotely sensed 

digital image and finding similar objects in a database of comparable imagery 
usually involves a high- level semantic description based on visual 
interpretation of every image in the database.  This work proposes a similarity 
search approach wherein the user identifies an object of interest, spatial and 
spectral characteristics of the object are calculated, and the result is compared 
to a database of these same calculations that have been performed on all 
images in the database.  The spatial extent of the object of interest is 
approximated using a region quadtree decomposition of the image.  Spatial 
indices such as fractal dimension, lacunarity, and Moran’s I index of spatial 
autocorrelation, along with spectral characteristics expressed as histograms of 
each band’s gray scale values are matched against a set of these same indices 
that have been previously calculated for all images in a database.  The sum of 
squared differences between the indices calculated for the quads that form the 



object of interest and the same quads in the database yields a ranked list of 
images that have similar characteristics.  The retrieval success rate is highly 
dependent on the configuration of quads used to define the object of interest 
and the nature of the object itself.  Objects such as a lake shoreline are best 
retrieved using the gray scale histogram, while urban features that are 
characterized by their texture are more accurately retrieved using indices such 
as fractal dimension or lacunarity.  

 
1. Introduction 

This paper describes a framework for content-based image retrieval using a region 
quadtree decomposition of images.  In this pilot-scale utility, a Landsat scene is subsetted 
it into 506 512 x 512 images.  A batch mode program then analyses each of these images 
for a number of textural indices and spectral (gray scale in the current version) 
characteristics.  These include:  box counting and triangular prism fractal dimension, 
Moran’s I, lacunarity, and mean, standard deviation and a 5-bin histogram of the 
brightness values.  These analyses are performed for six levels of quadtree decomposition 
of the image and the results are stored in a Microsoft Access database.  In the Image 
Characterization and Modeling System (ICAMS)(Quattrochi, et al., 1997), the user then 
opens a 512 x 512 image and uses the mouse to define an object of interest using a 
quadtree breakdown of the image.  Selected quads that correspond to the object are then 
analyzed for the same indices contained in the database.  The software then ranks the 
images on how closely the corresponding quads in each of the database images match the 
results for the object of interest.   

 
1.1 The Problem 

Satellite and aircraft-borne remote sensors have gathered huge volumes of data over the 
past 30 years.  In the Earth Observing System (EOS) era, terabytes of image data are 
being archived every day.  As the geographical and temporal coverage, the spectral and 
spatial resolution, and the number of individual sensors increase, the sheer volume and 
complexity of available data sets will complicate management and use of the rapidly 
growing archive of earth imagery.  A single scene also covers a large part of the Earth’s 
surface, so it may take a lengthy manual search to find other occurrences of an object of 
interest.  This paper proposes a method to facilitate analysis of either a database of 
separate images or specific features contained within a single image.  

 
1.2 Data Mining 

The vast amount of information on the World Wide Web would be of little use without a 
means to locate information on topics selected by a user.  Search engines that rely on 
keyword matches between the query and Web page titles or other indexed data are 
essential for successful use of this resource.  Indexing multimedia data, such as imagery, 
videos, and audio files have proven to be problematic (Paquet, et al., 2000).  The many 
existing and potential uses for remotely sensed imagery make accessing images suited to 
a particular user’s needs extremely complex and difficult.  Even seemingly simple 
searches for images depicting a particular location involve time-consuming analyses of 
the many individual scenes that have been gathered over the past 30 or more years, each 
having different sensor platforms, levels of quality (due to cloud cover, illumination, 



etc.), dates, and pre-processing.  Metadata schemes such as the Earth Observing System 
Data and Information System (EOSDIS) Core Metadata Model 
(http://ecsinfo.gsfc.nasa.gov) address this to some extent by specifying location, lineage 
(including image processing and projection information), sensor characteristics, and other 
identifying characteristics to aid searches for images of specific areas at specific times.  
Ohm, et al., (2000) characterize these as “high- level descriptors” which are generated 
when raw imagery is prepared for release.  Mid-level descriptors include rule-based 
semantic identification of objects within a scene such as lakes, mountains, and vegetated 
areas.  Low-level descriptors are image characteristics such as shape, color, pattern, and 
texture.  By their nature, the mid- and low-level descriptors are often user-specific, and it 
would not be practical to add all of this information as formal metadata, since it is 
impossible to anticipate all uses to which an image may be applied. 
 
It is becoming apparent that the common practice of using general metadata structures to 
access specific images is ineffective, thus pointing toward a need for intelligent image 
query techniques (Agouris, et al., 1999).  The MPEG-7 initiative aims to:  a) create 
standards for the description of shape, color, and texture of objects depicted in 
audiovisual data, b) implement a description scheme, and c) provide ways of extending 
these descriptors and schemes via a specification language (Benitez, et al., 2000).  
However, unlike other forms of multimedia data, remote sensing images do have 
characteristics that can be captured and generalized into mid- and low-level image 
properties.   

 
1.3 Content-based Image Retrieval 

Content-based image retrieval is the process of selecting images from an archive based 
on semantic and visual contents.  This necessarily involves high to low-level 
characteristics of the image itself (Smeulders, et al., 2000).  In most of the applications 
reported in the pattern recognition literature (Manjunath and Ma, 1996; Datcu, et al, 
2003; Yao and Chan, 2003; and Li and Narayanan, 2004), our approach, which generally 
use some type of supervised or unsupervised image classification technique to assist 
image retrieval, our approach is more automated, requiring human intervention only in 
the object identification stage.  Image classification requires some sort of human 
intervention, such as the selection of training sites for supervised techniques or the 
linking of cluster signatures to land cover classes in the case of unsupervised 
classification. 

 
2. Methodology 
 
2.1 ICAMS 

The Image Characterization and Modeling System (ICAMS) was initially developed by 
members of this research team (Quattrochi, et al., 1997; Lam et al., 2002) as an extension 
to the Arc/INFO and Intergraph MGE Geographic Information System (GIS) software 
packages, and it used the outdated ERDASTM .lan file format.  The recently developed 
ICAMS-Java version uses the latest Java Advanced Imaging (JAI) application 
programming interface, thus allowing the use of TIFF, GIF, JPEG, or PNG formatted 
images.  ICAMS was developed primarily as a test-bed for evaluating the performance of 



various spatial analytical methods on remotely sensed images and as such, it is intended 
to work with other commercially available image analysis and geographic information 
system (GIS) software packages.  Thus, the uncompressed TIFF format is expected to be 
utilized most often by ICAMS users, as this is compatible with all other types of 
software.   
 
ICAMS includes utilities for contrast stretching, edge detection, wavelet decomposition, 
and Fourier transforms.  It also computes fractal dimension using the box counting, 
triangular prism, and isarithm methods (Jaggi, et al, 1993), and it measures lacunarity, a 
scale-dependent measure of the gaps in an imaged pattern (Dong, 2000).  The application 
also includes utilities for measuring Moran’s I and Geary’s C indices of spatial 
autocorrelation (Cliff and Ord, 1973).  In addition to these global (whole image or user-
defined region of interest) measures, ICAMS includes local measures of triangular prism 
fractal dimension (Clarke, 1986), Moran’s I, Geary’s C, and Getis’ G and G* indices of 
spatial autocorrelation (Getis and Ord, 1992).  These local measures compute the values 
of these indices in a moving window, thus producing an output image that shows the 
differences in spatial complexity across a scene.   
 
The ICAMS feature that is the subject of this paper is the similarity search capability in 
which the user defines an object of interest, the application computes the spatial and 
spectral characteristics of this object and searches a metadata table for similar 
characteristics which indicate the presence of matching objects.  A separate application 
computes the fractal dimension by box counting and triangular prism methods, Moran’s I, 
lacunarity, and mean and standard deviation of the gray-scale values for an image 
database using a multi-resolution quadtree decomposition.  ICAMS computes these 
indices for the object of interest and retrieves matching images from the index database. 

 

2.2 Feature-Based Similarity Search 
Figure 1 shows the procedure used in this example.  A Landsat 7 ETM+ panchromatic 
image obtained on October 24, 2000 was subsetted into 512 x 512 pixel images to form 
an example image database.  The Landsat scene (Path 19, Row 36) includes the northern 
half of the Atlanta, Georgia metropolitan area, plus the southern end of the Appalachian 
Mountains in North Georgia, Alabama, North Carolina and Tennessee (Figure 2).  The 
scene includes a range of land covers including extensive areas of forested mountains and 
the northern suburbs of Atlanta, some large lakes, and smaller areas of pasture lands.   
 
Textural and gray scale characteristics of each of these 512 x 512 pixel images was 
analyzed in a recursive region quadtree structure (Samet, 1984), in which the results from 
progressively smaller square regions are stored in a relational database of image indices.  
An example object of interest contained in a 512x512 image is defined by a quadtree 
decomposition of the image.  Figure 3 shows how quads that correspond to the object are 
indexed within the region quadtree structure.  The user clicks on the image to break it 
down into progressively smaller segments.  Figure 4 shows an example object of interest 
that has been defined in this fashion, with the quads corresponding to the object selected 
by a right-click. 



 
 

Figure 1.  Content based image retrieval process. 
 
 
 

 
Figure 2.  Footprint of Landsat image showing Atlanta metropolitan area. 
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Figure 3.  Region quadtree map and tree structure for user defined object. 
 
 

 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Region quadtree feature selection in ICAMS.  (quads for user-defined object 
are highlighted in yellow). 
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2.3 Indices 

Each image was analyzed using a number of textural indices including:  fractal dimension 
by the triangular prism method, fractal dimension by box counting, and Moran’s I index 
of spatial autocorrelation.  Descriptive statistics of the gray scale digital numbers 
included:  mean, standard deviation, and a 5-bin normalized histogram.   

 
2.3.1 Fractal Dimension 

Fractal analysis (Mandelbrot, 1983) provides tools for measuring the geometric 
complexity of imaged objects.  In Euclidean space, a point has an integer topological 
dimension of zero, a line is one-dimensional, an area has two dimensions and a volume 
has three.  The fractal dimension (D), however, is a non- integer value that, in 
Mandelbrot's (1983) definition for fractals, exceeds the topological dimension as the form 
of a point pattern, a line, or an area feature grows more geometrically complex.  The 
fractal dimension of a point pattern can be any value between zero and one, a curve, 
between one and two, and a surface, between two and three.  Increasing the geometrical 
complexity of a perfectly flat two-dimensional surface (D = 2.0) so that the surface 
begins to fill a volume, results in D values approaching 3.0.   
 
ICAMS-Java has three methods of measuring fractal dimension of a gray-scale image 
surface:  the triangular prism method (Clarke, 1986), the isarithm method (Lam and De 
Cola, 1993) and the box counting method (Liebovitch and Toth, 1989; Sarkar and 
Chaudhuri, 1992).  The triangular prism method constructs triangles by averaging the z-
values (which in this case are the digital numbers) for sets of four adjacent pixels.  The z-
values for each pixel are used to establish heights at each corner, and triangles are formed 
by connecting these corner values to the mean value of the four pixels at the center of the 
array (Figure 5).   

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Triangular prism 
 
Figure 6 shows an example 7 x 7 array of pixel values.  In step 1, the areas of all triangles 
formed by 2 x 2 arrays of pixels are computed.  The areas of the triangular “facets” of the 
prisms are then summed to represent the total step 1 surface area.  The algorithm then 
steps to 3 x 3 arrays of pixels, with the center height corresponding to the average of the 
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four corners. The algorithm continues to increase the pixel size and compute the 
triangular prism areas until the entire surface is calculated as a single composite array.  
The logarithm of the total of all the prism facet areas at each step is plotted against the 
logarithm of the pixel dimension (integer multiples of 15 m for Landsat ETM+ 
panchromatic) at each step.  The fractal dimension is calculated by performing a least 
squares regression on the surface areas and pixel sizes.  The regression slope B is used to 
determine the fractal dimension D, where D = 2 – B.   
 
In the box counting fractal dimension measurement method, the image is considered to be 
a 3-dimensional space, with x and y being the column and row of the pixels, and the z 
value corresponding to the 8-bit gray scale value of the pixel.  Figure 7 shows an image 
grid with one row of 3 pixels depicted in this fashion.  If we stack a series of 3-
Dimensional boxes of pixel dimension r (r = 3 in Figure 7), so that the maximum z 
values are covered by the boxes at each x,y location, we can then determine the number 
of boxes needed to span the gray-scale values from the minimum to the maximum values.  
The total count of boxes needed to span all of the gray scale values throughout the image 
(Nr) is summed in Equation 1 as: 

∑=
ji

rr jinN
,

),(                                                           (1) 

where nr is the number of boxes needed to span the gray scale values at row, column 
location (i,j).  We compute d, the capacity, using a range of values of r and Equation 2: 
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r
N
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The slope of the least squares linear line b that best fits the computed values of d for a 
range of box sizes is the fractal dimension D,  where D = 2 – b.  

 

2.3.2 Lacunarity 
Lacunarity is a scale-dependent measure that is related to fractal dimension, but instead 
focuses on the distribution of gaps in a pattern.  Low lacunarity geometric objects are 
homogeneous, with similar gaps occurring at regular intervals if they occur at all.  High 
lacunarity objects have an irregular arrangement of gaps.  Since homogeneous patterns 
can appear heterogeneous over large spatial extents, lacunarity is scale-dependent.  The 
method for measuring lacunarity in ICAMS-Java is derived from the gliding box 
algorithm proposed by Allain and Cloitre, (1991), and developed by Plotnick, et al., 
(1996).  Dong (2000) extended the gliding box technique to gray-scale images.   

The gliding box method is similar to the box counting method described above, except in 
the case of lacunarity, Q(M,r), the probability function for the number of boxes of size r 
(called the mass, M) is calculated and used in Equation 3 to estimate the lacunarity ? : 
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Figure 6.  Triangular Prism Algorithm 
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Figure 7. Box Counting Method of Measuring Fractal Dimension 

 
2.3.3 Moran’s I 

In addition to variograms and fractal dimensions, spatial autocorrelation of raster images 
can be characterized by join count statistics such as Moran’s I and Geary’s C (Cliff and 
Ord, 1973), which reflect the differing spatial structures of the smooth and rough 
surfaces.  Moran’s I varies from +1.0 for perfect positive correlation (a clumped pattern) 
to –1.0 for perfect negative correlation (a checkerboard pattern).   
 

ICAMS also contains modules for analyzing the spatial autocorrelation of images.  
Moran’s I, Geary’s C, and Getis’ G, three indices of spatial autocorrelation, reflect the 
differing spatial structures of the smooth and rough surfaces.  Moran’s I is calculated 
using Equation 4: 
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where wij is the weight at distance d, so that, wij = 1 if point j is within distance d from 
point i, otherwise wij = 0; z's are deviations (i.e., zi = xi - xmean for variable x), and W is the 
sum of all the weights where i ≠  j. Moran’s I varies from +1.0 for perfect positive 
correlation (a clumped pattern) to –1.0 for perfect negative correlation (a checkerboard 
pattern).  In this example we did not find Moran’s I to be very helpful in image retrieval, 
possibly due to the narrow range of values (-1 to +1) for the standardized version of the 
statistic used to analyze the quads. 



 
2.3.4 Grayscale Histogram 

A 5-bin histogram of the grayscale values contained in each quad and stored in five fields 
in the index database.  In order to facilitate comparisons between different levels of the 
quadtree structure with the different numbers of pixels in each level’s quads, the 
histogram was normalized by converting each frequency bin to a percentage of total 
pixels in the quad.  The 5-bin histogram then was considered as a group of values in the 
least squares comparison and ranking of results. 
 

3. Results  
 
3.1 Static Feature Matching 

In static feature matching, the simplest form of image retrieval, the image index 
database is queried for the same quads in the same orientation and location as the user-
defined definition of the object of interest.  Corresponding quads in each of the 506 
images are compared to the object definition, and the results are ranked using a least 
squares comparison of the identified spectral or textural indices.   
 
In this example, two different objects were identified:  (1) a collection of quads that 
define a lake shore or river bank with a land/water contrast, and (2) an extensive 
residential area.   
 
Figure 8 shows the original query image of an area with a characteristic land/water 
contrast and the object definition for a 5-bin gray scale histogram analysis.  The images 
with the top five closest matches to the query image are contained in figures 8b. through 
8f.  Other than the mismatch of figure 8e. (caused by the strong mountain shadow having 
similar gray scale values to the water bodies), the histogram works well at retrieving 
objects having strong spectral contrast.  Table 1 shows that for this type of object, the 5-
bin histogram outperformed the other indexes at image retrieval. 
 
The heterogeneity of urban land covers makes summary statistics of gray scale values of 
relatively little use, since a diverse range of land cover types may have similar gray scale 
distributions.  Table 2 shows that lacunarity yielded the highest number of land/water 
contrast matches in the top five ranked images, followed by fractal dimension by box 
counting.  Figure 9 shows that four of the top five images in the lacunarity analysis 
matched residential areas.  The mismatch occurred in a mountainous area with small 
water bodies, cleared areas, shadows and other features that form a complex land cover 
that has a complex texture similar to an urban area. 
 

3.2 Translation, Rotation, and Scaling 
Content-based image retrieval that poses other challenges, such as translation of the x,y  
location of matching objects in other images, rotation of the object, scaling up or down in 
size, isolation of the object from other patterns and textures, and 3-D orientation of the 
object with respect to the observer (termed “object pose” in the pattern recognition 
literature).  However, the region quadtree structure allows at least partial ability to 
minimize some of these problems.   With regard to translation, it is possible to search 



other parts of the database images by moving the selected quads around in increments of 
the biggest quad in the object definition (see Figure 10).  90 degree rotations and 
reflections can easily be calculated within the quadtree object definition by simply 
changing the numbering of the nodes, although other types of rotations pose a difficult 
challenge (Figure 11).  Scaling at integer multiples defined by the quadtree structure are 
simply performed by jumping up or down within the quadtree (Figure 12).  The viewing 
angle problem is generally no t severe for aircraft and satellite imagery, since the 
perspective is always pretty much the same (though minor adjustments have to be 
considered for objects significantly off-nadir).   

 

Figure 8. Lake shore search using 5-bin histogram. 
 
 

Table 1. Comparison of image comparison indices for the top five ranked 
land/water contrasts. 

 

Index Matches 

Box Counting 1/5 
Triangular Prism 0/5 

Lacunarity 1/5 

Moran's I 0/5 

          a. Query image                           b. Rank 1 (hit)                          c.  Rank 2 (hit) 

    d. Rank 3 (hit)                          e.  Rank 4 (miss)                       f. Rank 5 (hit) 



Mean 2/5 

Std. Deviation 1/5 

5-bin Histogram 4/5 
 

Table 2.  Comparison of image comparison indices for the top five ranked 
residential areas. 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Index Matches 

Box Counting 3/5 

Triangular Prism 2/5 

Lacunarity 4/5 

Moran's I 0/5 

Mean 0/5 

Std. Deviation 0/5 

5-bin Histogram 2/5 

    a. Query image                     b. Rank 1 (miss)                c. Rank 2 (miss) 

      d. Rank 3 (Commercial - miss)     e.  Rank 4 (miss)                f. Rank 5 (hit) 



 
 

Figure 9.  Residential area matches using 5-bin histogram. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.  Translation of user defined object. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Rotation of user defined object. 
 
 

Rotation and scaling have not yet been incorporated into the ICAMS content-based image 
retrieval utility.  However, in the current implementation of ICAMS, translation is taken 
into account by moving the user defined set of quads around the entire range of possible 
locations of the largest quad in the object definition (Figure 10).  This increases the 
search time, especially if the object definition does not include any large quads.  
Allowing the object definition to translate across the image increased the success of the 
image retrieval process (Table 3).  Figure 13 shows that the 5-bin histogram returned 
matches in all five of the top ranked land/water contrast images.  A quantitative 
determination of the success or failure of a content-based image retrieval process 
necessarily involves a degree of subjectivity.  In this case, the database of 506 subsetted 
images was visually inspected for land/water contrast areas, and it was found that 62 of 



the 506 images contained a matching feature. A Mann-Whitney test was performed on 
the ranks of all remaining 505 images in the database.  Matches from the visual 
inspection of the database were coded as a binary grouping variable (0 = no land/water, 1 
= land/water interface).  Tables 4 and 5 show that the results of this analysis yield Mann-
Whitney U, Wilcoxon W and Z score statistics that show the overall rankings from the 5-
bin histogram were not likely to resemble those derived from a chance arrangement. 
 

 
 
Figure 12.  Scaling up user defined object according to quadtree hierarchy. 

 
 
 
 
 

Table 3.  Comparison of image comparison indices for the top five ranked 
land/water contrasts. 

 

a. 6-Level 
Quadtree 

b. 5-Level 
Quadtree 

1 2 3 4

2 3 4 2 3 4
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Figure 13. Lake shore search using 5-bin histogram with translation. 

 
 

Table 4.  Ranks of 5-bin histogram analysis of land/water contrast 
 
Group N Mean Rank Sum of Ranks 

No Land/Water 444 273.39 121385.00 
Land/Water 61 104.59 6380.00 

Total 505   
 

Table 5.Mann-Whitney test statistics of land/water analysis 
 

Index Lake w/Translation Res. Area w/Trans. 

Box Counting 1/5 4/5 

Triangular Prism 1/5 2/5 

Lacunarity 1/5 4/5 

Moran's I 1/5 1/5 

Mean 2/5 0/5 

Std. Deviation 2/5 0/5 

5-bin Histogram 5/5 1/5 

          a. Query image                      b. Rank 1 (hit)                         c.  Rank 2 (hit) 

       d. Rank 3 (hit)                        e. Rank 4 (hit)                           f. Rank 5 (hit) 



Statistic Value 
Mann-Whitney U 4489.00 

Wilcoxon W 6380.00 
Z -8.471 

Asymp. Sig. (2-tailed) 0.000 
 

 
Figure 14.  Residential area with translation (box counting fractal dimension). 

 
Images of urban areas are often more complex than natural landscape images, with a 
number of land covers closely interspersed.  Residential areas are particularly difficult to 
pick out from other land covers, since lawns and street trees resemble grasslands and 
forests, and the built up areas are often difficult to distinguish from more intensive 
commercial land uses.  Although small residential areas are dispersed throughout the 
Landsat scene, extensive areas corresponding to quads of 128 x 128 pixels 
(approximately 37 hectares) are concentrated in the Atlanta metropolitan area.  From 
visual inspection, 69 of the 506 images had extensive residential areas.  Figure 14 shows 
that the box counting fractal dimension successfully retrieved residential areas in four of 
the top five images.   The retrieval efficacies of lacunarity and box counting fractal 
dimension were compared using the Mann-Whitney test.  Tables 6 and 7 show that both 
methods were significantly different from random rankings, with the box counting fractal 
dimension having a slightly lower mean rank of residential area matches. 

 
 

     a. Query image                      b. Rank 1 (hit)                c.  Rank 2 (miss) 

    d. Rank 3 (hit)                   e. Rank 4 (hit)                   f.  Rank 5 (hit) 



 
 
 
 
 
 

Table 6. Ranks of box counting fractal dimension and lacunarity analysis of 
residential areas. 

 
Method Grouping N Mean Rank Sum of Ranks 

Lacunarity No Residential 438 278.10 121807.00 
 Residential 67 88.93 5958.00 
 Total 505   

Box Counting No Residential 438 278.26 121878.99 
 Residential 67 87.85 5886.00 
 Total 505   

 
 

Table 7.  Mann-Whitney test statistics of residential area analysis. 
 

Statistic Lacunarity Box Counting 
Mann-Whitney U 3680.00 3608.00 

Wilcoxon W 5958.00 5886.00 
Z -9.882 -9.947 

Asymp. Sig. (2-tailed) 0.000 0.000 
 
4. Conclusions 

 
Although the basic framework for performing content-based image retrieval is presently 
encoded into ICAMS-Java, there still remains much to accomplish before the tool can be 
considered successful.  Major challenges are:  developing a better user interface for 
outlining the feature of interest, finding improved ways to formulate the database query; 
properly weighting the different indices; and establishing a more efficient ranking of the 
images for retrieval.  The current version uses the sum of squared differences between the 
indices in the user defined object and the corresponding quads in the database for each 
image.  Currently, only single-band images can be analyzed at this point, and this limits 
the accuracy of the retrieval.  Adding multispectral capability should significantly 
improve performance, since many of the key identifying characteristics of objects are 
related to color (Yao and Chen, 2003), as represented by the information contained in 
multispectral bands.   
 
We have found that the quadtree structure provides a good basis for a user to isolate the 
object of interest from the background if the user selects regions that characterize the 
object itself and it is often useful to select surrounding regions that are not part of the 
defined object.  The quadtree structure also provides an efficient means of indexing and 
searching a database of low level image characteristics.  Some of the indices that have 



been examined in this work, most particularly fractal dimension and lacunarity, are 
greatly affected by the statistical support (size) of the selected quads, and this both 
encourages the use of larger quads and simultaneously leads to a more approximate 
definition of the complex shape of a defined object.  
 
Basically this region quadtree approach provides a framework for evaluating the 
performance of potentially any combination of textural or spectral measures for content-
based image retrieval.  Pre-processing a large image scene or a collection of scenes and 
storing the spatial and spectral indices in a database can potentially extend the definition 
of metadata beyond the usual descriptions of acquisition date, sensor identification, and 
lineage to a richer content-based description that can facilitate access to imagery that 
depicts specific objects and conditions on the Earth’s surface that may be of interest to 
researchers engaged in earth science, resource development, planning, and security 
investigations. 
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