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Abstract 

One of the powerful tools geospatial modeling uses is the Monte Carlo Method. 
However, little work has been done on measuring the optimal number of Monte 
Carlo iterations to be performed. In this work, we present the new utility of two 
metrics for deriving the number of Monte Carlo iterations needed to calibrate the 
CA-based SLEUTH Urban Growth Model. SLEUTH calibration is the process of 
choosing the best set of parameters to forecast urban growth into the future. 
SLEUTH calibration is performed on historical urban layers. The two metrics 
used are the OSM metric, which is the optimal combination of available SLEUTH 
metrics (like comparative size and dispersal of urban growth) and the MCAWS-
derived Diversity metric that accounts for the individual model run area in 
summarizing the Monte Carlo results. We applied these two metrics on the 
calibration of three different cities; Tampa, FL, Merced, CA, and the Ellwood 
region of Santa Barbara, CA. We found that for SLEUTH calibration of historical 
data sets, one would need between 10 and 25 Monte Carlo iteration for the 
optimal variation in the calibration process. We discuss the far-reaching 
consequences of discovering that “less is more” in terms of Monte Carlo iterations 
in urban modeling, Geocomputation, and beyond. 

 
 
1. Introduction 
 
One of the more powerful tools in geosimulation is Monte Carlo simulation. Assuming a 
Gaussian behavior, a stochastic model that is run multiple times will produce a distribution of 
outputs that describes the randomness and variability in the model. However, in geostatistics, 
there are no standard heuristics to identify the appropria te – or best – number of Monte Carlo 
iterations a model should run. The tradeoffs are clear; too few, and the diversity in the model 
results is not represented. If one runs too many Monte Carlo iterations, valuable computational 
resources are used up. Following in the footsteps of Oreskes et al (1994), who outlined the 



importance of model validation and testing, this research presents a methodology for interpreting 
spatial Monte Carlo results that are uniform in nature, using results from the calibration of the 
SLEUTH urban growth model as an example.  In this research, new metrics of gauging the 
diversity of Monte Carlo runs are introduced, as well as new metrics for testing the fit to the 
SLEUTH urban growth model. 
 
The SLEUTH urban growth model is a cellular automata model of urban and land use change 
(NCGIA 2003).  To date, it has been successfully applied to a variety of international urban 
regions including San Francisco, Porto and Lisbon, Portugal, and many others (Clarke et al. 
1997, Silva and Clarke 2002). SLEUTH models urban change with four forms of growth: 
Spontaneous Growth, New Spreading Center Establishment, Edge Growth, and Road-Influenced 
Growth.  Five coefficients are used to parameterize the four growth behaviors.  In the calibration 
process, the model tries to replicate historical urban extent as the method for determining the 
best parameter set that captures the “flavor” of that city’s growth. 
 
During the calibration process, the SLEUTH user selects the number of Monte Carlo iterations 
that they would like to use.  Traditionally this value has ranged from 3 to 100.  In this research 
the goodness of fit during calibration was determined by the OSM metric (Optimal SLEUTH 
Metric) (Dietzel and Clarke, In Review).  This metric was derived after exhaustive calibration of 
multiple datasets based on theoretical patterns of urban growth and data reduction through the 
use of self-organizing maps.  
 
The use of what we now call the Monte Carlo Method for simulation modeling exploded in the 
late 1930’s as a way of simulating a suite of possibilities of nuclear reactions (Kalos and 
Whitlock 1986). Using the Monte Carlo approach works best when the simulation behaves in a 
uni-modal manner (one mean), and multiple iterations of the simulation are available.  A 
common method of viewing the results of a simulation with a stochastic element is to take the 
spatial average of all of the Monte Carlo runs, producing an average or probability map. The 
advantage of spatial averaging of spatial spread model runs is that they are easy to understand 
and visualize, as well as being a well-understood view of the possibilities of the spread process. 
 
However, using spatial averaging of Monte Carlo iterations in spatial models is not always the 
easiest nor the most appropriate method to use in understanding the model or the outputs. If the 
simulation of spread produces multiple types of solutions, with a bi-, tri- or multi-modal 
distribution, spatial averaging will “wash out” the fine details of individual runs. For this 
research, we used the Monte Carlo Area Weighted Summation Metric (MCAWS) (Goldstein 
2004), a metric that takes the individual iteration’s extent into account when assessing the 
overall results of a group of Monte Carlo runs.    
 
The MCAWS spatially distributed metric is an alternative to the simple averaging of multiple 
Monte Carlo spread model results, and is designed to be used with binary output. The MCAWS 
metric is defined as follows (Equation 1): 
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Where n is the number of Monte Carlo iterations, i and j are the number of rows and columns, 
Arean is the total aggregate area populated by the output of an individual run (either 1 or 0),  

Area  is the average area of all the Monte Carlo iterations, MaxArea and MinArea are 
the respective maximum and minimum areal extents of all the Monte Carlo runs. MCAWS is 
calculated for a set of binary map outputs, on the entire grid. The MCAWS metric can range 
from 0 to 1, a 1 indicating regions that are populated in every single Monte Carlo runs, a zero for 
regions that do not appear in any output.  
 
An added advantage of the MCAWS is the Diversity metric, derived from examining the number 
of unique values in the MCAWS map. The Diversity metric can give an aspatial measure to 
compare different models runs of different spatial resolutions.  



 
2. Methods 
 
In this research, the SLEUTH model was used to model urbanization of three cities, Merced, CA 
(from 1974 to 2000), the Ellwood subset of Santa Barbara, CA (from 1968 to 1986), and Tampa, 
FL (from 1980 to 1992).  While these three urban areas have very different histories and 
characteristics determining the nature of their growth, there are some general similarities. 
Merced has developed in California’s open Central Valley, yet Tampa and Santa Barbara have 
been constrained by the ocean. All three cities were modeled at different spatial resolutions. The 
models were run in calibration mode, and  3,125 parameter sets were tested  in groups of 2, 3, 4, 
7, 10, 25, 50, and 100 Monte Carlo iterations (Figure 1). The goodness of fit of the model for 
each of these runs was measured by the OSM.  The diversity of the model runs was quantified 
by comparing the MCAWS-derived Diversity metric. The thesis of this work is that if more 
Monte Carlo iterations provide better metrics of fit, and capture the spatial diversity of the 
results, then more are needed. If more runs do not improve performance, fewer are needed.  
 

 
 

Figure 1 A sample SLEUTH simulation of Merced's urban extent in 2000 



 
3. RESULTS 
 
The different groups of Monte Carlo runs of each city’s urban growth were evaluated using the 
OSM metric. As evident in Figure 2, the OSM metric behaves in an asymptotic nature, 
indicating that the more Monte Carlo runs are repeated, the overall set of results does not 
improve.  
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Figure 2.  Goodness of fit for each calibration using 2, 3, 4, 7, 10, 25, 50, and 100 Monte Carlo 

iterations.  Note that the X-axis is logarithmic in scale. 
 
The graphical MCAWS output for the three study regions can be seen in Figure 3. Tampa’s 
growth was concentrated around urban cores. Merced shows inconsistent growth from the urban 
cores, and a significant amount of random growth. The Ellwood subset of Santa Barbara showed 
concentrated development along the coast and flat regions, with slope exerting negative pressure 
for urbanization. 
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Figure 3. MCAWS maps for the three test regions. A. Tampa, FL, B. Merced, CA, C, Santa 

Barbara, CA (Ellwood subset). The MCAWS values are indicated by the legend. Black indicates 
no urbanization due to any urbanization pressure, extreme slopes, or exclusion regions (like the 

ocean). 
 
As the number of Monte Carlo iterations used increases, the diversity of values increases in both 
the MCAWS map and the Average Map, due to spatial differences of the separate model runs. 
The MCAWS-derived Diversity metric and the number of unique values in the average map 
(“Diversity of the Average Map”) are presented in Table 1.  



 
Table 1. Diversity of MCAWS and the Average Map for all cities and Monte Carlo Groups 

 
 Merced, CA 

Number of Monte 
Carlo Runs 

2 3 4 7 10 25 50 100 

MCAWS Diversity 3 7 15 89 17
2 358 348 342 

Diversity of Average 
Map 

2 3 4 7 8 14 26 43 

Diversity Metric 1.
5 

2.3
3 

3.7
5 

12.7
1 

21.
5 

25.5
7 

13.3
8 

7.9
5 

 Santa Barbara, CA 
Number of Monte 

Carlo Runs 
2 3 4 7 10 25 50 100 

MCAWS Diversity 3 7 31 119 49
1 907 954 964 

Diversity of Average 
Map 

2 3 5 7 10 25 50 99 

Diversity Metric 1.
5 

2.3
3 

6.2 17 49.
1 

36.2
8 

19.0
8 

9.7
4 

 Tampa, FL 
Number of Monte 

Carlo Runs 
2 3 4 7 10 25 50 100 

MCAWS Diversity 3 7 15 123 53
9 

928 979 991 

Diversity of Average 
Map 

2 3 4 7 10 25 50 100 

Diversity Metric 1.
5 

2.3
3 

3.7
5 

17.5
7 

53.
9 

37.1
2 

19.5
8 

9.9
1 

 
A graphical rendering of the Diversity Metric is below (Figure 4). From the graph, one can see 
that increasing the number of Monte Carlo iterations in each group helps in capturing the spatial 
diversity of the SLEUTH runs. However, for all cities, after 10 Monte Carlo runs, the use of 
additional Monte Carlo runs gives no added benefit. This is because for this spatial model 
additional simulation runs are merely repeating almost the same spatial pattern. From Figure 2, 
one can determine that adding more Monte Carlo runs does not improve the overall fit of the 
model. From Figure 4, it can be said that for SLEUTH, between 10 and 25 Monte Carlo runs are 
ideal. More than that, the model is capturing redundant information. Fewer than that, the 
simulation runs miss the unique inherent stochasticity of the model.  
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Figure 4.  The Diversity Metric for each calibration using 2, 3, 4, 7, 10, 25, 50, and 100 Monte 

Carlo iterations. Note Log scale of number of Monte Carlo runs. 
 
4. Conclusions 
 
This work provides a preliminary investigation into exploring the variation in goodness of fit and 
spatial diversity as a function of the number of Monte Carlo iterations used in a stochastic 
cellular automaton. As a test case, we used one model with three data sets. For SLEUTH, we 
hope to gain insight into obtaining the reasonable number of Monte Carlo iterations used in an 
urban simulation. Since SLEUTH can run on the order of hours on contemporary computing 
platforms, understanding how many iterations need to run is important. This work will continue 
by examining scale-related issues of multiple Monte Carlo runs in SLEUTH, specifically 
changes in domain and spatial grain. A provocative finding of this study has been that the 
assumption that the more Monte Carlo iterations are performed the better is incorrect. 
Furthermore, MCAWS and the diversity metric provide a means to select how many iterations 
are best in any modeling context. 
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