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Abstract 
The work reported here has been motivated by the need for a generic 
spatial model to overcome the limitations of Cellular Automata (CA) 
regarding the rigid square-cell structure and limited neighbourhood 
configurations. A novel approach for spatial modelling technique is 
developed: the “vector-agent” in which the individual entity is 
represented by their real geometric boundaries (which can change over 
time) beneath an agent modelling structure. We show in this paper how 
the theory behind CA and agents can be combined to produce a generic 
and dynamic agent based on the vector data structure. This new 
paradigm has extended  capabilities over the Geographic Automata 
(Torrens and Benenson, 2005 ) in terms of CA disunity and the 
abstraction of non- fixed-objects. Through computer simulation, 
different techniques and algorithms have been derived achieving a high 
degree of representational realism for a variety of phenomena . 

 
 
1. Introduction 
Long debates have been articulated about the value of using Cellular Automata (CA) 
for spatial modelling, especially for a complex spatial phenomena such as the city 
(Batty, 2000, 2001; Torrens and O'Sullivan, 2000a). In particular, the representation 
of space as a collection of regular square cells is regarded as a limited assumption in a 
spatial simulation domain (Benenson and Torrens, 2004a; Benenson and Torrens, 
2004b). Initial research towards an irregular CA have used Voronoi diagrams instead 
of the fixed and regular neighbourhoods of CAs (Shi and Pang, 2000). However, these 
limited configuration ignore any distance function, which is a part of any dynamic 
spatial process (White and Engelen, 2000). Various alternative  approaches have been 
investigated, including Delaunay triangulation (Semboloni, 2000) and planar graphs 
(O'Sullivan, 2000, 2001) as the basis for neighbourhoods. A question arose from the 
consequences of this large number of modifications to the basic CA framework in the 
phenomena being modelled, “Do these modifications lead the spatia l model towards 
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the needed degree of realism?”. It should be made clear that these extensive 
modifications may move the attention of model developers away from exploring the 
idea behind the phenomena being processed and how the systems function, and lead 
to a more chaotic model structure (Torrens and O'S ullivan, 2000b). CA, even 
modified-CA, cannot therefore truly model real world entities. A more flexible and 
dynamic spatial model with no supplements or modifications is crucial.  
 
The notion o f spatial-agents has been precisely investigated (Rodrigues, 1999 ), where 
agents interact spatially in coordinate-space. Such agents claim the capability to 
position and react to stimuli in a spatial domain. However, most of the research have 
combined Multi Agent Systems (MAS) with CA as a model framework (Barros, 
2003; Batty et al., 2003; Haklay et al., 2001). Although, such integration has 
advanced the model mobility and flexibility, this model framework still exploits a 
strict CA regular configurations (Torrens and Benenson, 2005).  
More recently the term automata has emerged from the CA model and employed 
independently as an autonomous object in the spatial simulation domain (Benenson 
and Torrens, 2004b). The most prominent research in this area is the Object-Based 
Environment for Urban Simulation (OBEUS) (Torrens and Benenson, 2005). The 
notion of this new automata is based on a set of spatial-referencing rules for situating 
automata in space with more flexibilities in defining the neighbourhood rules instead 
of a fixed neighbourhood as in CA. This has been done in space formed by square-
cells as a testing environment and justified in existing geo-spatial database utilising 
two type of agents; fixed-agent (i.e. land parcel) and non- fixed agent (social actors, 
i.e. householders, landlord…etc.). 
However, the question still remain s; since many phenomenon objects are subject to 
irregular change in nature (like-organisms in biology or urban pattern in city), “how 
do agent systems revea l these dynamic  objects in a more realistic fashion and 
represent the interaction among these types of non-fixed agents”? This cannot be 
conceived using CA-agents. The regular partition of space as a conceptual basis 
should be substituted by another approach.  
 
This paper introduces a generic spatial modelling technique: the “vector-agent”, 
which is based on irregular vector data structure and influenced by the agent oriented 
paradigm. The vector agent provides more realism for  representing individual object 
by their real geometric boundaries (which can change over time). The merit of such an 
approach is that the vector-agent can be a direct abstraction of real world entity 
allocating itself in the spatial domain, not virtually trying to disperse its entity to a 
fixed-object (Torrens and Benenson, 2005). 
 
The paper outlines an advanced development to the model structure based on an early 
hypothetical test of vector-agents applied to von Thunen’s theory of agricultural land 
use for model verification (Hammam et al., 2004). The novel characteristics of vector-
agent and how these can be supported by the notion of an agent-system will be 
discussed in section 2. Section 3 illustrates a review of topological relations among 
agents and algorithms fo r constructing geometry. Model implementation and 
experimental results are presented in section 4. Finally, section 5 draws some 
conclusions and describes future directions for this on going research. 
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2. Agent-Based Simulation and Vector-Agent Paradigm 
The thesis of this paper is that the use of the agent-oriented paradigm is to represent 
dynamic individuals embedded in space, and who are able to interact spatially derived 
by goal-oriented behaviour. This not only support the views presented later 
(especially in Luck et al., 2003), but it provides additiona l advantages which can exist 
with the vector-agents paradigm. These can be summarised as follows : 

- Representing any phenomenal entity by irregular vector data structure: the 
agent has therefore an advantage of being more realistic, flexible for 
representing real world features, such as buildings, roads ….etc., not 
generalised square-cells. The agent has also advanced interaction capabilities 
with variant topological relations. 

- The entity is abstracted so that  it is able to define its own location in space 
with dynamic rules: this can overcome the limitations of a restricted 
neighbourhood exhibited in CA. The agent can allocate itself randomly or 
regarding attraction and repulsion forces generated from the surrounding 
environment. 

- The agent is born with a nondeterministic shape boundary : this advances the 
capability of agent to construct a rule-based shape with increasing structural 
complexity, rather than assign a new entity to an object with fixed boundary 
(Torrens and Benenson, 2005), or allocates itself in space with static shape to 
just interact spatially with other agents (Rodrigues, 1999). This can be 
achieved using different operators for assigning and changing the object 
boundary such as midpoint-displacement, line-displacement,…..etc. The 
vector-agent provides a flexible mechanism for meeting a certain threshold 
and satisfying the agent’s goal using more complex operations such as, a 
generalisation technique (for achieving a desired fractal dimension), or split 
(to meet a certain size). 

- Since the agent is an abstraction of a real-world entity in the simulation 
domain, the agent’s goals are consequently abstraction of the entity’s 
properties : the agent can therefore maintain its identity derived by that entity’s 
interactive behaviour in a spatial domain . 

 
Here, it is worth noting the differences between the agent-oriented and object-oriented 
paradigms, and the notion of an agent system, in order to justify the above 
characteristics of vector-agents. Objects inhibit the behaviour (methods) and fixed 
roles required to implement the functions needed and do not usually change roles once 
the application has been deployed. The interactions between objects are explicitly 
defined. Objects are used by other objects to perform actions, which in turn do not 
initiate actions of their own choice. Agent systems make use of concurrency, both 
inside individual agents and certainly among different agents. Sequencing control 
through a set of agents cannot provide a truly agent-oriented system. Therefore, the 
collection of agents have to be running simultaneously (via multithreading), not 
sequentially.  Each agent has internal goals as well as roles. However, agents can 
change roles dynamically as the application runs, which is not a property of a standard 
object-oriented system (Russell and Norvig, 2003). 
 
The definition of agent may be considered as follows: 
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”An agent is anything that can be viewed as perceiving its env ironment through 
sensors and acting upon that environment through effectors” (Russell and Norvig, 
1995). 
“Intelligent agents continuously perform three functions: perception of dynamic 
conditions in the environment; action to affect conditions in the environment; and 
reasoning to interpret perceptions, solve problems, draw interfaces and determine 
actions” (Hayes-Roth, 1995). 
“An intelligent agent is generally regarded as an autonomous decision-making 
system, which senses and acts in some environment” (Wooldridge, 1997). 
 
Considering the previous definitions, we argue here that three common properties can 
be observed; the agents must sense : the environment that surrounds the agents; agents 
operate without the direct intervention of humans; and agents interact with other 
agents, which exhibit a goal-directed behaviour to have some kind of control over 
their action. This argument is supported by (Luck et al., 2003), who provides a 
rigorous framework in de fining agent in terms of “entities’ hierarchy”. They propose a 
four-tiered hierarchy comprising entities, objects, agents, and autono mous agents 
(Figure 1). In their essence, entities simply provide a way to denote components in the 
world before they can be at any recognisable structure. Objects can then be defined to 
be things that have abilities and attributes. Similarly, agents are just objects that are 
useful, where this usefulness is defined in terms of satisfying some goals. In other 
words, an agent is an object with an associated set of goals. Lastly, autonomous 
agents are just agents that can generate or adopt their goals in response to current 
environmental conditions. They concluded the framework as “…if there are attributes 
and capabilities, but no goals, then the entity is an object. If there are goals but no 
motivations, then the entity is an agent. Finally if neither the motivation nor goal sets 
are empty, then the entity is an autonomous agent”. 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 1. Entity Hierarchy overview (source: Luck et al., 2003) 
 
 
In terms of spatial simulation, most types of simulation involve some spatial context. 
A typical example is the fact that generally a simulation is representing an 
environment that exists somewhere in space. The objects embedded in the 
environment will be spatially located (Rasmussen and Barrett, 1995). The concept of 
a Spatial-agent has been defined concerning the framework provided by (Russell and 

Entities 

Objects 

Agents 

Autonomous 
Agents 
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Norvig, 1995) as a template with spatially-aware properties through reinforcement 
learning methods (Rodrigues et al., 1998; Rodrigues, 1999). 
Bearing in mind the above characteristics; the agent properties with the conclusion 
drawn by (Luck et al., 2003); and the notion of spatial agent (Rodrigues, 1999), we 
state that a “vector-agent is defined by goal-oriented Euclidian geometry who is able 
to evolve and change it’s own shape keeping the entity properties while interacting 
with other agents using a set of rules in the Euclidean plane”. 
 
 
3. Irregular Shapes and Randomness in Fractal Construction 
As mentioned, the main objective is to construct an irregular geometry class agent. 
Before considering the implementation of such an agent class (section 4), it is 
necessary to know the specific characteristics of the geometry relationship when 
inserting shape agents in a spatial environment, and the mechanisms for constructing 
such geometry in a spatial simulation domain . 
 
3.1. Space and topological relationships 
Topology is a branch of geometry, concerned with the set of geometric properties that 
remain invariant under scale transformation (Laurini and Thompson, 1992; Worboys 
and Duckham, 2004).  
All familiar topological properties can be defined : meet, joint, disjoint, intersect, 
overlap…. etc., which define the topological spatial relations to polygonal areas in the 
plane (Egenhofer and Franzosa, 1991). These spatial relation properties will derive the 
relative neighbourhood relationships of geometries positioned in space. Subsequently, 
by increasing the model complexity, other topological relations may be defined, not 
with respect to sets of adjacent objects or entities, but as a region of space (i.e. spatial 
proximity) based on a certain distance from the object under question. More variant 
relationships with respect to the exterior element direction can also be defined 
(Egenhofer and Franzosa, 1994). 
 
3.2. Shape construction and evolution in a system environment 
In many cases world phenomena carries some fractal characteristics. For example, 
urban patter ns, landscape features, coast line…etc. obeys some fractal laws. Self-
similarity seems to be one of the fundamental fractal geometric attributes (Peitge n et 
al., 1992). However, some man- made objects such as building blocks have no 
apparent self-similarity, but still the objects carry some statistical fractional sense 
when magnified. Generally, many natural shapes possess the property that they are 
irregular in their boundary. Methods for generating models of shapes with prescribed 
fractal dimension with exact self-similarity, are not perceived as realistic models. The 
reason lies in their lack of randomness (Peitgen et al., 1992). Therefore, one of the 
consequences is that it is impossible to assign only the self-similarity fractional law 
for abstracting objects which have such irregularity in nature. We argue here that in 
order to create more natural shapes, a randomization process must be utilized that is 
closer to stochastic shape evolution. One such dynamical process  is Brownian Motion 
named after Robert Brown, regardin g his work on the random movement of 
microscopic particles (Rucc, 1994). Pure Brownian motion (Bm) can be defined as 
tracing out the total random walk distance travelled by a point in the plane in 
appropriate units of time resulting in a Gaussian or bell-shaped distribution from the 
initial location. The most popular way to produce Brownian motion is called random 
midpoint displacement (Kenkel and Walker, 1996). This method has received interest 
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from those concerned with computer graphic simulation and many other disciplines 
especially in  simulating natural fractal shapes such as stochastic 3D modelling of 
terrain (Goodchild and Mark, 1987 ). Simple Bm has been generalised to derive the 
fractal dimension for varying phenomena by introducing Hurst exponent h as fractal 
parameter specifying the roughness of an object (Voss, 1988). It has been proved that 
D = 2-h, where D is the fractal dimension. With this relation the fractal dimension D 
of regular Brownian motion (h = 0.5) would be 1.5. When h < 0.5 the shape is rough 
and when h > 0.5 the shape is smoother. 
In practice, the Bm can be achieved in Euclidean space by considering a line segment 
as an initiator with repetition of recursive subdivision by midpoint displacement. This 
interpolation has two forms ; displacement of the middle point along the axis of the 
line segment or displacement of the middle point along the segment perpendicular 
bisector (the y-axis), (see Figure 2. c, d, e). A generalised algorithm is given by the 
formula  in Equation 1: 
 

Ynew = 0.5 (y1 + y2) + µo 02 -lh 

(1) 
 
 
where (y1, y2) are the start and end points of the line segment being subdivided along 
the y axis, µ stands for a random number from Gaussian (normal curve) distribution, 
o0 is the standard deviation of Gaussian curve which is equal to 1, l is the level of 
recursivity, and h is the fractal parameter mentioned above specifying the roughness 
of an object (Laurini and Thompson, 1992). 
In summary, the Brownian motion will be extended as a base for constructing the 
irregular geometry in our vec tor-agent model. However, adaptations for giving the 
geometric shape more freedom to evolve stochastically have  been performed and will 
be illustrated in the following section for model implementation.  
 
 
4. Model Implementation and Experimental Results 
This section describes a testing environment for the methodology discussed in 
sections 2 and 3 The main concept is to create a simulation, which involves a spatial 
environment with elements positioned in it. These elements are agents with adaptive 
capabilities that enable them to interact and take actions with spatial implications. 
 
4.1. Model elements 
The main focus  of our simulation model in this stage is to demonstrate that the vector-
agent is capable of initiating its own shape, which can change over time with a 
number of modified parameters using different  operators associated with variant 
system probabilities. 
The simulation is therefore composed of the following: 

- Continuous vector-space (coordinate-space) with predefined x, y coordinates. 
This is a passive or static  object that will never change its state. 
- The shape class, an agent, searching for unoccupied space that fulfils its 
preferences in interacting with other agents. 
- The neighbourhood, a rule-based class, which the shape agents use to extract 
the current interaction rule  with other agents. This governs the previous 
topological relations addressed in sectio n 3.1. 
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- The shape-behaviour class, containing three different algorithms to be 
conducted by the shape-agent in each execution of the simulation. These can be 
summarised as follows: 

- Splitting the shape edge with new point generated by Brownian motion 
algorithm. The point is being displaced assigned randomly along the edge 
(Figure 2. e, f). The displacement of this point is thereby allocated into the 
new position along the segment bisector with random angle (0 < ? < 
180). 
- Moving the whole edge on new coordinates with a certain distance 
(Figure 2. g, h). 
- Moving one of the shape vertices outside the shape-boundary with 
random distance into a new position (i.e. new x, y) (Figure 2. i, j). 

The last two rules have  been s uggested to produce different shape with different sizes, 
rather than employing Bm algorithm solely, and to provide flexibilities for more 
realistic shape evolution. Providing evidence for generating unrestricted shape 
boundary on current stage of model implementation is crucial. In a generic sense, the 
system must be able to deal with any phenomena in the simulation domain.  Therefore, 
the model was elaborated in such a way that the shape change algorithms are as 
simple and complete as possible.  
 
 

 
Figure 2. How shape starts and evolves in  spatial 
simulation domain: (a) starting by random point, (b) 
allocating second point by random x, and Bm around the y 
axis , (c, d) applying the random midpoint displacement and 
accomplishing closed polygon, (e, f) choosing any edge 
randomly and applying the midpoint displacement , (g, h) edge 
displacement, (i, j) vertex displacement. 

 
 
4.2. Simulation results 
The simulation starts by executing the desired number of agents. Every agent starts by 
exploring any available empty space and allocating itself randomly (i.e. random x, y). 
Subsequent points are generated based on Bm algorithm to accomplish a closed 
geometry (polygonal shape) (Figure 2. a, b, c, d). Thus, the shape-agent begins to 
evolve conducting one of the previous algorithmic operators in the shape-behaviour 
class (Figure 4). Here it should be made clear that the agent is born with equal 
opportunity for observing these operators (i.e. 1/3 probability for midpoint 
displacement…..etc.). This is the case in the primary stage in the simulation runs . 
According to the neighbourhood role set up before execution, any agent has 
consequently a chance to change the opportunity for observing one of the shape 
evolution techniques  based on the current situation with other agents.  This may be the 

b c d e f g h i j a 
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evidence for changing interactive behaviours regarding the agents’ perception in the 
environment, and decide whether to move in relation to other agents. 
 
Figure 3 shows a typical simulation run for 600 time steps. Four agents utilise an 
“overlap ” topological relationship with no restriction of shape size.  At 0 time step the 
agent is observing the space to allocate its new point with a subsequent of other two 
points (t2). After 3 time steps where the agent achieved the third point and closed 
polygon, it is the time for the agent to start evolving. As the simulation progress, the 
agent is  conducting one of the operators described above utilising the neighbourhood 
relationship. By the time 200 and 400  a hole has formed in the latest polygons, which 
can reminiscently anticipated many real-world geographic phenomena, such as cities. 
 
 

    
t 0   t1   t2   t3 

    
t4   t5   t10   t15 

    
t20   t50   t100   t200 

    
t300   t400   t500   t600 

Figure 3. Simulation result for first 600 time steps 
with overlap topological relationship 

 
 

Twelve different combinations of algorithmic operators have been tested associated 
with a variant of system’s probability (p). Fractal analysis in different combinations 
has been done to prove that vector-agents can successfully produce any desired shape 
regarding a system demand. According to insignificant change in shape size after 
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1000 time steps observed from a number of different simulation executions, such time 
has been set up for investigating all operators behaviours. Table 1 Figure 5 illustrates 
the fractal dimension (D) for a single agent in different time steps. As the agent starts 
to evolve after accomplishing a closed polygon, t4 indicates the starting evolution 
time. Over the simulation time, the agent varies the D parameter regarding the 
operator/operators being used. By using only the midpoint displacement with initial D 
parameter generated from Equation 1 (in this test 1.5 was the initial parameter, i.e. h = 
0.5), the fractal dimension does not exceed 1.512. This is because the Bm algorithm 
controls the degree of roughness during the simulation. However, this type of 
restriction has not successfully controlled the simulation when deploying with other 
operators. One possible cause for this might be the altering of the other two operators’ 
parameters. 
Obviously, the fractal dimension increases sharply to more than 1.668 at 100 time 
steps while the system deploys the edge displacement operator with a higher degree of 
probability (Figure 5.b, g, k). A reason for such occurrence is due to the shape, which 
expands its boundary with two new vertices in each time steps. This operator is 
distinct from the other two operators where only one new verte x is claimed.  
 
As mentioned, the model should be able to produce different types of shape with 
various sizes in order to easily behave like any phenomena abstraction. Figure 5 
describes the trends over time of shape size associated with different combinations of 
algorithmic operators. While deploying an edge displacement solely or at any 
combinations, dramatic change can be noticed in shape size (F igure 5. b, g, k). 
Alternatively, applying the midpoint or vertex displacement individually or with a 
higher degree of probability, a slight change can be generated (Figure 5. a, c, d, h, i).  
 
 

Table 1. Fractal dimension associated with different operators’ probabilities as 
simulation result for first 1000 time steps 

 

Operators  

Initial 
fractal 

dimension 
(D) 

t4 t100 t200 t300 t400 t500 t600 t700 t800 t900 t1000  

Mp = 1  1.5 1.325 1.358  1.504 1.461  1.434 1.478  1.498 1.491  1.512 1.459  1.475 

Ep = 1  Null 1.315 1.668  1.657 1.626  1.642 1.637  1.643 1.652  1.654 1.652  1.657 

Vp = 1  Null 1.311 1.439  1.422 1.407  1.406 1.401  1.422 1.429  1.432 1.447  1.445 

Mp = 0.33, Ep = 0.33, Vp = 0.33 1.5 1.327 1.581  1.663 1.766  1.798 1.781  1.791 1.785  1.774 1.795  1.782 

Ep = 0.5, Mp = 0.5 1.5 1.319 1.715  1.726 1.741  1.737 1.726  1.731 1.731  1.729 1.729  1.725 

Mp = 0.5 , Vp = 0.5  1.5 1.274 1.634 1.675 1.694  1.694 1.693  1.691 1.691  1.693 1.686  1.681 

Ep = 0.5, Vp = 0.5 Null 1.316 1.662  1.644 1.661  1.679 1.698  1.711 1.718  1.727 1.761  1.753 

Vp = 0.9, Ep = 0.1 Null 1.223 1.583  1.571 1.591  1.579 1.606  1.659 1.660  1.681 1.701  1.723 

Vp = 0.9, Mp = 0.1 1.5 1.323 1.483  1.471 1.491  1.479 1.506  1.559 1.595  1.581 1.601  1.62 

Mp = 0.8 , Ep = 0.1, Vp = 0.1 1.5 1.244 1.636  1.689 1.707  1.688 1.711  1.744 1.731  1.734 1.746  1.748 

Ep = 0.8, Mp = 0.1, Vp = 0.1 1.5 1.292 1.668  1.668 1.706  1.731 1.747  1.751 1.721  1.7 89 1.796  1.806 

Vp= 0.8, Ep = 0.1 , Mp = 0.1 1.5 1.314 1.559  1.621 1.641  1.644 1.654  1.649 1.722  1.783 1.791  1.831 

 
M = Midpoint displacement, E = Edge displacement, V = Vertex displacement, p = the system probability 
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Apply to the whole set of 
evolving algorithms: fBm, 

moving edge, moving vertex 
A = {a1, a2, a3} 

Check empty space and agent rules 

Allocate start point 
randomly  

Construct the other two points using 
Bm algorithm  

Build agent database 

A query set of edges 
E = {e1, e2, e3, ……..en} 

Pick any edge randomly (ei), and 
ei ∉ E 

Pick any algorithm randomly 
with equal probability (ai), and 

ai ∉ A 

Checking the environment: 
neighbourhood rules and collision 

Is E = Ø? 

Check agent goals 

Is new 
object 

allowed? 

Yes No 

No 

Yes 

No 

Yes 

Yes No Quit 
agent 

Is A = Ø? 
Is ai, (ei) 
meeting 

conditions? 
Reconstruct the database 

Agent is born 

Figure 4. Schematic representation of agent behaviour algorithm 
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a. Midpoint displacement p = 1 
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b. Edge displacement p = 1 
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c. Vertex displacement p = 1 
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d. Midpoint displacement p = 0.33, Edge displacement p = 0.33, Vertex displacement p = 0.33 

 
Figure 5. Fractal dimension and the trends over time of shape size generated by 

applying different operations with different probability (p) as simulation result for 
first 1000 time steps 

 
 

Fractal dimension 
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Trends over time of shape size 
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e. Edge displacement p = 0.5, Midpoint displacement p = 0.5 
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f. Midpoint displacement p = 0.5, Vertex displacement p = 0.5 
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g. Edge displacement p = 0.5, Vertex displacement p = 0.5 
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h. Vertex displacement p = 0.9, Edge displacement p = 0.1 

 
Continue Figure 5. 
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Trends over time of shape size 
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i. Vertex displacement p = 0.9, Midpoint displacement p = 0.1 
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j. Midpoint displacement p = 0.8, Edge displacement p = 0.1, Vertex displacement p = 0.1 
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k. Edge displacement p = 0.8, Midpoint displacement p = 0.1, Vertex displacement p = 0.1 
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l. Vertex displacement p = 0.8, Edge displacement 0.1, Midpoint displacement p = 0.1 

 

Continue Figure 5. 
 
 

We can summarise our findings in the way that city as a complex phenomena is likely 
to be the most prominent approach for our model justification. The similarity between 
our model output and the land parcel extracted from real-world data can be visually 
proved (Figure 6). Where more evidence can be claimed, the shape generated from 

Input D = 1.5 

Fractal dimension Trends over time of shape size 
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model simulation is noticeably similar to a part of the model output generated from 
CA for simulating an urban growth pattern (Figure 7). These primary comparisons 
and observation can ground  some of the vector-agents hypothesis, which is the ability 
to simulate irregular objects and manipulate their geometric boundary. These in turn 
have resulted in generating different shapes that can easily interpret different types of 
complex phenomena as in city. 
It is important here to state that carrying out these comparisons are just to proving 
some visualisation similarities, nothing more than that. No entity states, transition 
rules, or time scale, have been set up yet, which it will be the next stage in the model 
implementation while is being calibrated with a real- word data. 
 

 
A sample of land use parcels for Swindon, south central England, with average fractal dimension 1.570 

(source: Batty and Longley, 1994 ) 
 

    
Disjoint   overlap   overlap   meet 

Vector-agents in different simulation output with various topological relationships 
and average fractal dimension 1.581 

Figure 6. Comparison between vector-agents simulation output and land use parcels  
 
 

 a                  b 
Figure 7. Comparison between vector-agent simulation output with non-restricted 

shape size and overlap topological relationship (a), and simulated urban scenario of 
Sydney for urban development generated by CA (b) (source: Liu, 2001) 

 



 15 

 
5. Conclusion and Future Research Direction 
The aims of this paper have been to explore a generic spatial model using vector-
agents. Current spatial modelling techniques are limited due to the constraints of 
Cellular Automata. These limitations and the lack of achieving satisfactory model 
output led to introducing a new class of geographic automata (Torrens and Benenson, 
2005). The general concept of this new automata has been der ived by merging CA 
with multi-agent systems. While the agents are deployed with a fixed-object, and no 
interaction between them, limitations still remain in this new automata class. To fill 
this gap our generic model has been implemented with the power of the notion of the 
agent-oriented paradigm (Luck et al., 2003) and the concept of spatial-agents 
(Rodrigues, 1999). The notion of a vector-agent is capable of being born, evolve, and 
interact spatially as an irregular geometry in coordinative space. Whereas, the 
geometric shape is constructed based on the Bm for controlling the degree of 
roughness in the simulation domain with other developed algorithms. These 
procedures for simulating irregular objects and manipulating their geometric boundary 
get the objects into a higher degree of reality as an abst raction of real-world entities. 
It is noteworthy tha t the focus of this agent is on the importance of the emergent 
pattern from the behaviours of each individual and its interactions in the spatia l 
simulation domain. Here only the abstraction of an entity into the spatial simulation 
domain and how it can be evolved is represented, i.e. the mechanisms for constructing 
the geometry and how the boundary changes over time. 
Further research is on going for providing the relation of agents with other attraction 
or repulsion constraints. By introducing isotropic features and increasing the model 
complexity, agents can claim the desired fractal dimension, size and evolution of 
shape. The primary simulation test which has been carried out for measuring the 
shape roughness and size suggests that the model can be successfully calibrated in the 
area of land use and urban context. 
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