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Abstract 
Humans are mobile and constructs of Geographic Information Science have been used 
to model daily and weekly activity patterns, as well as residential and work spaces. But 
geographic epidemiology often ignores human mobility and employs methods that 
assume humans are sessile rather than mobile. This paper first quantifies how relaxing 
the assumption of sessile individuals might impact case-control cluster tests, and finds 
the results are highly sensitive to when the system is observed.  Recently developed 
tests for case-control clustering that account for human mobility are then presented, 
along with extensions to the analysis of infectious disease data. We conclude by 
revisiting an analysis of bladder cancer in south eastern Michigan, and demonstrate the 
ability of the new techniques to detect global and local clustering in case-control data 
for residential histories. Statistical techniques that account for human mobility are 
needed for chronic and infectious diseases where causative exposures occur at 
locations different from ones location at time of diagnosis.   

 
1. Introduction  
Population surveys in the United States estimate that adults spend the majority of their day inside 
(87%), 69% of this at home, and 6% in a vehicle (Reuscher et al 2002).  People are highly mobile, 
and this mobility evinces daily, weekly, and seasonal patterns.  In addition, substantial portio ns of 
the US population frequently move their place of residence, with an average of once every 5-7 
years.  But most published disease cluster investigations ignore the dynamics of human mobility and 
instead assume static geographies in which individuals are immobile. Examples include the use of 
geocoded place of residence at time of diagnosis, death, and at time of birth, as well as the address 
of the admitting hospital to record locations of health events.  A substantial body of literature in 
spatial epidemiology thus ignores human mobility, even though most researchers acknowledge that 
residential mobility should be accounted for, especially for diseases with long latencies such as 
cancer.  
 
Present-day GIS software is not well suited to the representation of mobile individuals, nor to the 



handling of information from temporally dynamic spatial systems (AvRuskin et al 2004).  Goodchild 
(2000) called this the “static world view”, and one tangible consequence is a lack of statistical 
methods for disease clus tering that are suited to mobile individuals (Jacquez 2000). Space Time 
Intelligence Systems or STIS (Jacquez et al 2005a; Greiling et al 2005) address this weakness by 
implementing space-time data structures and constructs from time geography for representing human 
mobility. The STIS software is now being used to reconstruct exposure and provides a powerful 
visualization and analysis platform for undertaking space-time analyses in epidemiology (AvRuskin 
et al 2004; Meliker et al 2005). The technology also supports temporally dynamic geostatistical 
analysis (Goovaerts and Jacquez 2005) and the analysis of health disparities (Goovaerts 2005). 
Jacquez et al (2005b) recently proposed global, local and focused tests for case-control data with 
residential histories. This paper extends these methods to the analysis of infectious diseases, and 
revisits his analysis of bladder cancer in south eastern Michigan using more current data.   
 
1.1 Setting the Problem 
When considering temporal change in the geographic distribution of cases relative to controls, one 
might use place of residence of individuals from T years ago, and then allow T to vary in a range of 
several decades. The addresses of place of residence then will change through time, and one could 
simply apply a purely spatial cluster method to each change point. How might results vary 
depending on when one looks at the system (e.g. on selection of T)? Jacquez et al (2005b) 
demonstrated that this naïve approach can be misleading since it ignores the duration of each 
geographic “slice”, and does not take the temporal dynamic into account when assessing cluster 
probabilities.  They analyzed data from a population-based bladder cancer case-control study 
currently underway in south eastern Michigan.  Cases are recruited from the Michigan State Cancer 
Registry and diagnosed in the years 2000-2004.  Controls are frequency matched to cases by age 
(±5 years), race, and gender, and recruited using a random digit dialing procedure from an age-
weighted list.  Using Cuzick and Edwards (1990) Tk statistic with k=5 nearest neighbours they then 
analyzed these data at every point in time when the topology of place of residence of the cases and 
controls changed.  The graph of Tk through time (Figure 1) is ascending, reflecting the larger 
number of cases and controls residing in the study area in later time periods.  Clearly, results of 
cluster analyses that rely on single locations may be highly sensitive to the choice of the time for 
which the analysis is conducted.   
 
2. Methods   
We are interested in two types of methods, the first for infectious disease processes and the second 
for chronic diseases such as cancer.  The first approach uses activity spaces and infection traces to 
model the individual contacts that spread infectious diseases such as SARS. We use SARS as a 
concrete example but note this approach could be extended to vector borne diseases without undue 
difficulty.  The second set of methods was presented by Jacquez et al (2005b) and will be briefly 
summarized.  
 



 
Figure 1. Graph of Cuzick and Edward’s Tk statistic (top) and its Probability (bottom) through 

time.  From Jacquez et al (2005b). 
 
2.1 Methods for Infectious Diseases  
We are interested in developing analysis approaches that make explicit the role super spreaders and 
infection foci play in epidemic spread.  SARS transmission requires close contact between infected 
and susceptible individuals.  Miller (2005) and others have defined activity spaces that represent the 
space-time locations of mobile individuals as they move throughout their day.  We build on this 
construct to model infection traces defined as those portions of the activity space in which cases 
were infectious.  Infection transmission events are possible only when the infection traces for cases 
intersect with the activity spaces of susceptible individuals in a fashion (e.g. of sufficient duration) 
that supports infection transmission.  For example, by documenting and modelling the space-time 
geometry of activity spaces for SARS cases and controls, one could identify those characteristics of 
human mobility that are associated with infection transmission events in the Beijing SARS outbreak.  
We now present the modelling approach, and then define statistics for the clustering of infection 
traces 
 
2.1.1 Methods for modelling activity spaces 
 Hagerstrand (1970) conceptualized the space time path as an individual’s continuous physical 
movement through space and time, and visually represented this as a 3-dimensional graph.  Hornsby 
and Egenhofer (2002) recognized that space-time paths mediate individual-level exposure to 
pathogens and environmental toxins, and that practical application would require a mechanism for 
representing location uncertainty.  A space time prism refers to the possible locations an individual 
could feasibly pass through in a specific time interval, given knowledge of their actual locations in the 



times bracketing that interval. The potential path area (Miller, 2005) shows the locations the 
individual could occupy given these constraints, and represents places where exposure events might 
occur.  These constructs enabled new research approaches in diverse fields such as student life 
(Huisman and Forer, 1998), sports analysis (Moore et al, 2003), social systems (Kwan, 2000), 
transportation (Miller 1991), the analysis of disparities in gender accessibility in households (Kwan 
2003), and the modelling of human activity spaces for both chronic and infectious diseases (Sinha 
and Mark 2005, Jacquez 2005).   
 
2.1.2 Notation 
Define the coordinate },{ ,,, tititi yx=u  to indicate the geographic location of the  ith case or control 

at time t.   Activity spaces can then be represented as the set of space-time locations as:   
      ),...,,( 10 iTiii uuuL =     (Equation 1) 

 
This defines individual i at location 0iu at the beginning of the study (time 0), and moving to location 

1iu  at time t=1.  At the end of the study individual i may be found at iTu .  T is defined to be the 

number of unique location observations on all individuals in the study.   Activity spaces can be 
associated with time-dependent attributes such as infection status, case control status, and so on.  
We now define a case-control identifier, ic , to be  
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Define na to be the number of cases and nb be the number of controls.  The total number of 
individuals in the study is then N=na+nb. 
 
2.1.3 Nearest neighbour relationships for activity spaces 
Let k indicate the number of nearest neighbours to consider when evaluating nearest neighbour 
relationships (see for example Jacquez 1996), and define a nearest neighbour indicator to be: 
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We then can define a binary matrix of k th nearest neighbour relationships at a given time t as: 
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This matrix enumerates the k  nearest neighbours (indicated by a 1) for each of the N individuals.  
The entries of this matrix are 1 (indicating that j is a k  nearest neighbour of i at time t) or 0 
(indicating j is not a k nearest neighbour of i at time t).  It may be asymmetric about the 0 diagonal 



since nearest neighbour relationships are not necessarily reflexive. Since two individuals cannot 
occupy the same location, we assume at any time t that any individual has k unique k-nearest 
neighbours.  The row sums thus are equal to k ( ktki =• ,,,η ) although the column sums vary 

depending on the spatial distribution of case control locations at time t.    The sum of all the elements 
in the matrix is Nk . 

There exists a 1 x T+1 vector of times denoting those instants in time when the system is observed 
and the locations of the individuals are recorded.   We can then consider the sequence of T nearest 
neighbour matrices defined by 

}..0{ , Tttk
T
k =∀= η?     (Equation 5) 

This defines the sequence of k nearest neighbour matrices for each unique temporal observation 
recorded in the data set, and thus quantifies how spatial proximity among the N individuals change 
through time.   
 
2.1.4 Definition of Infection Traces 
Infection traces are those portions of an infected individual’s activity space that were traversed while 
that individual was infectious.  An infected individual is defined as infectious during an infectious 
period ( E∆ ).  Depending on the disease, this may or may not be preceded by a latent disease 
period ( L∆ ) in which the infected individual is not yet infectious.  Given the activity space for case i, 

iL , denote the space-time coordinate at time of diagnosis as 
Dti ,u , noting that iti D

Lu ∈, .  We can 

then define that subset of the activity space iL  over which the infectious period occurred as: 

 
)()({ ,,, ELDiEDiti

E
i ttt ∆−∆−>>∆−∀= uL    (Equation 6) 

 
Here Dit ,  is the time of diagnosis for individual i.   The term )( , EDit ∆−  is the time when the 

infectious period began and )( , ELDit ∆−∆−  indicates the time prior to diagnosis when the latent 

period began.  Hence equation 6 denotes that portion of case i’s activity space in which s/he could 
have infected susceptible individuals.  Call this the infection trace.  Notice this infection trace 
assumes a natural history of infection in which the infection event occurs, is followed by a latency 
period, and then by a period in which the individual is infectious.  Upon diagnosis we assume the 
patient is treated and his/her activities are curtailed to prevent infection of others.  This is easily 
modified to fit other models of the natural history of infection, including those in which infectivity 
continues after diagnosis. 
 
2.1.5 Definition of Sampling Distributions for Infection Traces 
Once we know the sampling distributions for infection traces we can define statistics to identify 
super-spreaders in which infection traces cluster about certain individuals, as well as geographic 
areas traversed by many infection traces (locations of high infection transmission).   To do this 
denote the distribution of infectious periods for the cases as EΨ .  Notice this is a distribution of 
durations.  This may be defined empirically as: 
 

},..,1{ˆ
, aEiE ni =∀∆=Ψ    (Equation 7) 

 



Further, define the distribution of times of diagnosis as DΨ .  This may be defined empirically as: 
 
    },..,1{ˆ

, aDiD nit =∀=Ψ    (Equation 8) 

 
This is the distribution of points in time defined by the times of diagnosis of the cases.  Finally, define 
the distribution of latency periods as 

LΨ .  This may be defined empirically as: 
 
    },..,1{ˆ

, aLiL ni =∀∆=Ψ .   (Equation 9) 

 
In order to evaluate whether infection traces of the cases cluster we first must construct a procedure 
for generating representative times of diagnosis, latent periods, and infectious periods for the 
controls.  Once this is accomplished we will be able to determine whether the infection traces for the 
cases cluster relative to those so constructed for the controls.  Given the activity space of a control, 
steps involved to accomplish this are: 
 
 (1) Set the “time of diagnosis” for each control to the time of diagnosis for the matched case.   
 
(2) Define the exposure window and latency period for each control based on the covariates 
for each control as was accomplished for that control’s matched case.  Completion of steps (1) and 
(2) will result in infection traces for both cases and controls 
 
(3) Randomly assign case-control identifiers across the residential histories with equiprobability 
conditioned on the total number of cases and the total number of controls.  
 
(4) Calculate the desired test statistic for clustering of infection traces. 
 
(5) Repeat steps 3 and 4 a desired number of times to construct the reference distribution of the 
statistic under randomization.       
 
2.1.6 Statistics for Modelling Super Spreaders 
Super spreaders are those individuals who infect many other individuals.  The infection trace for 
case i ( E

iL ) records those places where that individual was while s/he was infectious.  Now define 

an indicator, ei, t, as: 
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When ei, t is 1, let us say the infection trace is “active”.  A local case-control test for spatial 
clustering of infection traces at time t is then: 
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 This is the count, at time t, of the number of k nearest neighbours of case i’s infection trace that are 



cases (and not controls) and whose infection traces also are active.   Hence the statistic will be large 
when infection traces of a group of cases are active at about the same time and cluster about case i.    
 
We can explore whether infection traces of cases tend to cluster spatially about certain individuals 
(e.g. super spreaders) through time.  A statistic sensitive to this pattern is: 
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E
kiQ ,  will tend to be large when active exposure traces for cases tend to cluster around the active 

exposure trace of the ith case.   
 
2.1.7 Statistics for Modelling Sites of High Infection Transmission 
We can also ask whether the infection traces of cases cluster about specific locations (e.g. mixing 
sites) that we refer to as a focus:    
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Here tkjF ,,,η  is 1 if individual j is a k  nearest neighbour of the focus at time t, and 0 otherwise.  The 

statistic E
tkFQ ,,  is the count of the number of cases whose infection traces are k nearest neighbours 

of the focus at time t.  Significance of this statistic may be evaluated by constructing infection traces 
for the controls as described earlier, and by then repeatedly allocating case-control identifiers across 
the N activity spaces that are k  nearest neighbours of the focus in order to construct the reference 
distribution for E

tkFQ ,, .  Notice this statistic can also be implemented through time in a manner 

analogous to equation 12. 
 
2.2 Methods for Chronic Diseases 
Jacquez et al (2005b) developed global, local and focused tests for case-control clustering of 
residential histories for use with chronic diseases such as cancer.  These statistics are similar in 
concept to the ones presented above, using nearest neighbour relationships, case-control identifiers 
and activity spaces as defined earlier in Equations 1-5.  But rather than having the activity space 
denote destinations or “stays” in a person’s day, the locations recorded in Equation 1 are places of 
residence over the last 20 or more years during which causative exposures might have occurred.  
Jacquez et al (2005b) presented dozens of cluster statistics for assessing different aspects of space-
time patterns.  We will employ the duration-weighted versions of their statistics for global, local and 
focused clustering. 
 
To determine whether there is statistically significant case clustering of residential histories 
throughout the study area and when the entire study time period is considered (a spatially and 
temporally global test) we will use statistic ω

kQ  as defined in Equation A5 of their appendix.  This 
will tell us whether there is overall global clustering of residential histories when the residential 
histories over the entire study period are considered simultaneously.   
 
Should significant global clustering be found, we next use statistic ω

kiQ , , as defined in their Equation 

A6, to identify local clusters of residential histories.  This statistic will be evaluated for each of the 



cases to identify those cases with low p-values.  Notice these local statistics are a decomposition of 
the global statistic into local contributions, and the sum of the local statistics is equal to the global 
statistic.    
 
We will use statistic ω

kF
Q

,
from Equation A8 to determine whether bladder cancer cases cluster near 

the business addresses of industries known to emit bladder cancer carcinogens.  This will allow us 
to evaluate whether there was statistically significant clustering about a given industry F (e.g. a 
specific metal-plating business) over the life of its operation.  We will use statistic 

okFQ ω,, from 

Equation A7 to identify those time intervals when there was case clustering about industry F. 
 
3. Bladder Cancer Data 
A population-based bladder cancer case-control study is underway in south eastern Michigan.  
Cases diagnosed in the years 2000-2004 are recruited from the Michigan State Cancer Registry. 
Controls are frequency matched to cases by age (±5 years), race, and gender, and are being 
recruited using a random digit dialing procedure from an age-weighted list. To be eligible for 
inclusion in the study, participants must have lived in the eleven county study area for at least the 
past 5 years and had no prior history of cancer (with the exception of non-melanoma skin cancer). 
Participants are offered a modest financial incentive and research is approved by the University of 
Michigan IRB-Health Committee. The data analyzed here are from 219 cases and 437 controls. As 
part of the study, participants complete a written questionnaire describing their residential mobility. 
The duration of residence and exact street address were obtained, otherwise the closest cross 
streets were provided.  See Jacquez et al (2005b) for geocoding procedures and accuracy.   
 
Address histories were collected for those industries believed to emit contaminants associated with 
bladder cancer.  These were identified using the Toxics Release Inventory (TRI 2000) and the 
Directory of Michigan Manufacturers (Manufacturer Publishing Co., 1946, 1953, 1960, 1969, 
1977, 1982).  Standard Industrial Classification (SIC) codes were adopted, but prior to SIC 
coding, industrial classification titles were selected.  Characteristics of 268 industries, including, but 
not limited to, fabric finishing, wood preserving, pulp mills, industrial organic chemical manufacturing, 
and paint, rubber, and leather manufacturing, were compiled into a database. Each industry was 
assigned a start year and end year, based on best available data. Industries were geocoded 
following the same matching procedure as for residences: 89% matched to the address, 5% were 
placed on the road using best informed guess, and as a last resort, and 6% were matched to town 
centroid.   
 
4. Results  
Following Jacquez et al (2005b) we used k=5 nearest neighbours when evaluating the global, local 
and focused tests.  The test for global clustering of residential histories under the duration weighted 
statistic was highly significant ( ω

kQ =4853780063.0 case seconds, p=0.001 using 999 Monte Carlo 
simulations).  This means there is significant clustering of residential histories of cases relative to 
controls over the entire study area and duration of the study.  We thus are justified in decomposing 
this statistic into local contributions in order to identify those cases whose residential histories tend to 
be near other cases.   

 



Using the local statistic we identified 6 cases that are the nexus of local case clusters ( ω
kiQ ,  ranged 

from 6027091200.0 to 4370889600.0 case seconds; p ranged from 0.004 to 0.009).  We 
considered a local cluster significant only when its p-value was less than 0.01.  Of these 6, five 
resided in Oakland county, and one in Lansing.  The map of cases and controls in January, 1993 is 
shown in Figure 2.  At that time four of the cases were on municipal water supplies that are 
monitored for elevated arsenic levels, and 2 were on private wells.  Because they are subject to 
monitoring and government regulation, municipal sources do not have the high levels of arsenic that 
are observed in certain ground waters in the study area.  It thus is unlikely these cases can be 
attributed solely to high drinking water arsenic concentrations, since their sources of supply were 
primarily municipal rather than private wells. 

 

 
 
Figure 2. Map of significant local clusters of residential histories at t=01/01/2003. Circles are cases, 
crosses are controls.  Red indicates cases whose residential histories have p-values less than 0.01.  
Underlying geography is the water supply source, with gold indicating private wells, and blue and 

tan municipal supplies.  
 

 



 
Figure 3. Map of significant focused clusters of residential histories at t=01/01/1990. Circles are 
cases, crosses are controls.  Red indicates cases and industries whose address histories have p-

values less than 0.01.  The industry that is the focus of a significant cluster of residential histories of 
cases is shown as a red triangle. 

 
Could the spatial and temporal patterns of these cases be attributed to industrial sources?  To 
address this question we used the duration-weighted focus tests.  We used the business address 
histories of the 268 industries described earlier and found one industry with a focused p-value less 
than 0.01 (

okFQ ω,, =2398550400.0 case seconds; p=0.004; 999 Monte Carlo runs).  This indus try 

is located in Oakland County and has one of the significant bladder cancer cases as a first nearest 
neighbour (Figure 3). 
 
5. Discussion 
The results presented above are tentative as the study is in progress and cases and controls are still 
being enrolled.  It is entirely possible that the significant clustering found from these incomplete data 
is an artefact of the order in which cases are being collected and will disappear when the complete 
and fully validated data set is available. Our purpose in analyzing these data has been for 
demonstration only, specifically to illustrate how these novel global, local and focused tests for 



clustering of residential histories are applied. 
 
This paper derived new statistics for the identification of super spreaders and foci of infection for 
infectious diseases, and revisited an analysis of a chronic disease (bladder cancer) to illustrate the 
identification of global, local and focused clustering of residential histories.  The major difference 
between the methods for infectious vs. the methods for chronic diseases is in the definition of the 
activity space from which the nearest neighbour relationships are calculated.  For infectious diseases 
the time span of the infection process is a few days, for cancer the time lag between causative 
exposure and diagnosis can be decades.  Thus for infectious diseases we concern ourselves with the 
quantification of daily and weekly activity patterns; for chronic diseases we consider residential 
histories.  The research described in this paper uses super sets of nearest neighbour matrices to 
define the space-time geometry of cases and controls.  Constructs based on the notion of geospatial 
lifelines are used to create “threads” corresponding to daily activity patterns (for infectious diseases) 
and residential histories (for the bladder cancer example).  Logical extensions to this approach 
include the mathematical definition of geometries representing weekly and seasonal activity patterns.  
The movement model used in this paper is a step function whereby an individual is considered to 
move instantaneously from one location to another.  While this is a reasonable abstraction for 
residential histories, where the time spent moving is very brief compared to the time spend residing 
in a home, it may not be reasonable for modelling daily and weekly activity patterns.   Further 
research is needed to develop modelling approaches appropriate for assessing daily exposures in 
the workplace and while commuting. 
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