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Abstract

Humans are mobile and congtructs of Geographic Information Scierce have been used
to model daily and weekly activity patterns, aswell as residential and work spaces. But
geographic epidemiology often ignores human mobility and employs methods thet
assume humans are sessile rather than mobile. This paper firgt quantifies how relaxing
the assumption of sessile individuas might impact case control cluster tests, and finds
the results are highly sensitive to when the system is observed. Recently developed
tests for case-control clustering that account for human mobility are then presented,
dong with extendons to the andyss of infectious disease data. We conclude by
revisting an analyss of bladder cancer in south eastern Michigan and demonstrate the
ability of the new techniques to detect globa and loca clustering in case control data
for resdentid histories. Statidtical techniques that account for human mobility are
needed for chronic and infectious diseases where causative exposures occur at
locations different from ones locationat time of diagnosis.

1. Introduction

Population surveys in the United States estimate that adults spend the mgority of their day insde
(87%), 69% of this a home, and 6% in a vehicle (Reuscher et d 2002). People are highly mobile,
and this mobility evinces daily, weekly, and seasond patterns.  In addition, substantid portio ns of
the US population frequently move their place of resdence, with an average of once every 57
years. But most published disease cludter investigetions ignore the dynamics of human mobility and
ingtead assume static geographies in which individuas ae immohbile. Examples include the use of
geocoded place of residence at time of diagnos's, death, and at time of birth, as well as the address
of the admitting hospital to record locations of hedth events. A subgtantid body of literature in
spatid epidemiology thus ignores human moility, even though most researchers acknowledge that
resdentid mobility should be accounted for, especidly for diseases with long latencies such as
cancer.

Present-day GIS software is not well suited to the representation of mobile individuds, nor to the



handling of information from temporally dynamic spatia systems (AvRuskin et d 2004). Goodchild
(2000) cdled this the “datic world view”, and one tangible consequence is a lack of Hatitical

methods for disease clustering that are suited to mobile individuds (Jacquez 2000). Space Time
Intelligence Systems or STIS (Jacquez et al 2005a; Greiling et d 2005) address this weakness by
implementing space-time data structures and congtructs from time geography for representing human
mohility. The STIS software is now being used to reconstruct exposure and provides a powerful

visudization and andyss platform for undertaking space-time anadyses in epidemiology (AvRuskin
et d 2004; Meliker et a 2005). The technology aso supports tempordly dynamic geostatistical

andysis (Goovaerts and Jacquez 2005) and the analysis of hedlth disparities (Goovaerts 2005).
Jacquez et a (2005b) recently proposed global, loca and focused tests for case-control datawith
resdentid histories. This paper extends these methods to the andysis of infectious diseases, and
revisits hisanalysis of bladder cancer in south eastern Michigan using more current data.

1.1 Setting the Problem

When consdering tempora changein the geographic digtribution of cases rdaive to controls, one
might use place of resdence of individuds from T years ago, and then dlow T to vary in arange of
several decades. The addresses of place of residence then will change through time, and one could
amply aoply a purely spatid cluster method to each change point. How might results vary
depending on when one looks a the system (eg. on sdection of T)? Jacquez et a (2005b)
demondrated tha this naive approach can be mideading since it ignores the duration of each
geographic “diceg’, and does not take the tempora dynamic into account when assessing cluster
probabilities. They analyzed data from a populationtbased bladder cancer case-control study
currently underway in south eastern Michigan. Cases are recruited from the Michigan State Cancer
Registry and diagnosed in the years 2000-2004. Controls are frequency matched to cases by age
(£5 years), race, and gender, and recruited using a random digit diaing procedure from an age-
weighted list. Using Cuzick and Edwards (1990) Tk statistic with k=5 nearest neighboursthey then
andyzed these data at every point in time when the topology of place of residence of the cases and
controls changed. The graph of Tk through time (Figure 1) is ascending, reflecting the larger
number of cases and controls resding in the study area in later time periods. Clearly, results of
clugter andlyses that rely on single locations may be highly senstive to the choice of the time for
which the andysisis conducted.

2. Methods

We are interested in two types of methods, the first for infectious disease processes and the second
for chronic diseases such as cancer. Thefirgt approach usesactivity spaces and infection tracesto
modd the individua contacts that spread infectious diseases such as SARS. We use SARS as a
concrete example but note this approach could be extended to vector borne diseases without undue
difficulty. The second set of methods was presented by Jacquez et d (2005b) and will be briefly
summarized.
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Figure 1. Graph of Cuzick and Edward s Tk statistic (top) and its Probability (bottom) through
time. From Jacquez et a (2005b).

2.1 Methods for Infectious Diseases

We areinterested in developing analysis approaches that make explicit the role super spreaders and
infection foci play in epidemic spread. SARS transmission requires close contact between infected
and susceptibleindividuals. Miller (2005) and others have defined activity spaces that represent the
space-time locations of mobile individuds as they move throughout their day. We build on this
congtruct to mode infection traces defined as those portions of the activity space in which cases
wereinfectious. Infection transmisson events are possible only when the infection traces for cases
intersect with the activity spaces of susceptible individudsin afashion (eg. of sufficient duration)
that supportsinfection transmission. For example, by documenting and moddling the space-time
geometry of activity spaces for SARS cases and controls, one could identify those characteristics of
human mobility thet are associated with infection transmisson eventsin the Beijing SARS outbresk.
We now present the moddling approach, and then define statistics for the clustering of infection
traces

2.1.1 Methods for modedlling activity spaces

Hagerstrand (1970) conceptualized the space time path as an individual’ s continuous physical
movement through space and time, and visualy represented this as a 3-dimensiond grgph. Hornsby
and Egenhofer (2002) recognized that space-time paths mediate individual-level exposure to
pathogens and environmenta toxins, and that practica application would require a mechanism for
representing location uncertainty. A space time prism refers to the possible locations an individug
could feasibly passthrough in a specific time interva, given knowledge of their actud locationsin the



times bracketing that interval. The potentia path area (Miller, 2005) shows the locations the
individua could occupy given these condraints, and represents places where exposure events might
occur. These constructs enabled new research gpproaches in diverse fields such as student life
(Huisman and Forer, 1998), sports analysis (Moore et a, 2003), socia systems (Kwan, 2000),
trangportation (Miller 1991), the andysis of disparitiesin gender accessibility in households (Kwan
2003), and the modelling of human activity spaces for both chronic and infectious diseases (Sinha
and Mark 2005, Jacquez 2005).

2.1.2 Notation
Definethe coordinate u,, ={x,,,y; } to indicate the geographic location of the i"" case or control

a timet. Activity spaces can then be represented as the set of space-timelocationsas:
L, =(Uq,U;q,ees Uip) (Equetion 1)

Thisdefinesindividud i &t location u, , & the beginning of the study (time 0), and moving to location
u, atimet=1. Attheend of thestudy individud i may befound a u,,. T isdefined to bethe

number of unique location observations on dl individudsin the udy. Activity Spaces can be
associated with time- dependent attributes such as infection status, case control status, and so on.
We now define a case-control identifier, ¢, , to be

c _11if and only if iisacase

"1 Ootherwise (Equation 2)
|

Define n, to be the number of cases and n,, be the number of controls. The total number of
individudsin the dudy isthen N=n_+n,.

2.1.3 Nearest neighbour relationships for activity spaces
Let k indicate the number of nearest neighbours to consider when evaluating nearest neighbour
relationships (see for example Jacquez 1996), and define a nearest neighbour indicator to be:

ilif and only if jis ak nearest neighbor of i attimet )
ho . =i _ (Equation 3)
1 Ootherwise

We then can define abinary matrix of k™ nearest neighbour relationships a agiventimet as.

é 0 h1,2,k,t . . hl,N,k,t U
u
31 2,1kt 0 U
2 =€ u (Equation 4)
e h u
é . N-1,N.k.t(]
8‘ N1kt NN Lkt 0 H

This matrix enumerates the k nearest neighbours(indicated by a 1) for each of the N individuds.
The entries of thismatrix are 1 (indicating thet j isak nearest neighbour of i a timet) or O
(indicetingj isnot a k nearest neighbour of i & time t). 1t may be asymmetric about the O diagond



since nearest neighbour relationships are not necessarily reflexive. Since two individuas cannot
occupy the same location, we assume a any timet that any individua has k unique k-nearest
neighbours The row sumsthusare equd tok (h; ., = k ) dthough the column sums vary

depending on the spatid digtribution of case control locations a timet.  The sum of al the dements
in the matrix is Nk.

Thereexistsa 1l x T+1 vector of times dencting those ingtants in time when the system is observed
and the locations of the individuals are recorded. We can then consider the sequence of T nearest
neighbour matrices defined by

2 =fh,, " t=0.T} (Equation 5)
This defines the sequence of k nearest neighbour matrices for each unique tempora observation

recorded in the data set, and thus quantifies how spatid proximity among the N individuds change
throughtime.

2.1.4 Definition of Infection Traces

Infection traces are those portions of an infected individud’ s activity space that were traversed while
that individud was infectious. An infected individud is defined as infectious during an infectious
period (D, ). Depending on the disease, this may or may not be preceded by alatent disease
period (D, ) inwhich the infected individud is not yet infectious. Given the activity space for case,
L, , denote the space-time coordinate a time of diagnossas u;,_, notingthet u;, T L;. Wecan
then define that subset of the activity space L, over which the infectious period occurred as.

LS ={u,," @tp- Dg)>t>(t,- D - Dg) (Equetion 6)

Heret, , isthetimeof diagnosisfor individud i. Theterm (t, , - D) isthetimewhenthe
infectious period begen and (t;, , - D_ - D¢) indicatesthetime prior to diagnoss when the latent
period began. Hence equation 6 denotes that portion of case i’ s activity gpace in which s’he could
have infected susceptible individuds. Cal thisthe infection trace. Notice thisinfection trace
assumes anaurd higory of infection in which the infection event occurs, isfollowed by alatency
period, and then by a period in which the individud isinfectious. Upon diagnosis we assume the
patient istreated and his’her activities are curtailed to prevent infection of others. Thisiseasly
modified to fit other modds of the naturd history of infection, including those in which infectivity
continues after diagnogs.

2.1.5 Definition of Sampling Distributionsfor Infection Traces

Once we know the sampling ditributions for infection traces we can define Satistics to identify
super- spreaders in which infection traces cluster about certain individuas, as well as geographic
aress traversed by many infection traces (locations of high infection transmisson). To do this
denote the distribution of infectious periods for the casesas v . . Notice thisis adigtribution of

durations. Thismay be defined empiricaly as.

A~

Ye={Dg" i=1.,n} (Equetion 7)



Further, define the distribution of times of diagnosisas Y ;. This may be defined empiricaly as:
Yo ={tp" i=L.,n} (Equation 8)

Thisisthe digribution of pointsin time defined by the times of diagnosis of the cases. Findly, define
the distribution of latency periodsas v . Thismay be defined empiricaly as

A~

Y, ={D " i=1.,n}. (Equetion 9)

In order to evauate whether infection traces of the cases cluster we first must construct a procedure
for generating representative times of diagnosis, latent periods and infectious periods for the
controls. Once thisis accomplished we will be able to determine whether the infection traces for the
cases clugter relative to those so congtructed for the controls. Given the activity space of a control,
sepsinvolved to accomplish thisare:

() Setthe“timeof diagnoss’ for each control to the time of diagnosis for the matched case.

(2 Define the exposure window and latency period for each control based on the covariates
for each control as was accomplished for that control’s matched case. Completion of steps (1) and
(2) will result in infection traces for both cases and controls

(©)] Randomly assign case control identifiers across the resdentiad histories with equiprobability
conditioned on the total number of cases and the total number of controls.

4 Cdculate the desired test statistic for clustering of infection traces.

5) Repeat steps 3 and 4 a desired number of times to congtruct the reference distribution of the
Satistic under randomizetion.

2.1.6 Statisticsfor Modelling Super Spreaders
Super spreaders are those individuas who infect many other individuals. The infection trace for
casei (L) records those places where that individua was while shhe wasinfectious. Now define

anindicator, e, ¢, as

o, :}1” and o.nly if time t iswithin th einfection tracefor individud i (Equation 10)
" 1 Ootherwise

When g, ¢ is 1, let ussay theinfection traceis“active’. A locd case-control test for spatia
clugtering of infection traces e time t isthen:

QI,Ek,t =G &, hi,j,k,t C €, (Equation 11)

. QJOZ

j=1

Thisisthe count, & time t, of the number of k nearest neighbours of casei’sinfection trace that are



cases (and not controls) and whose infection traces dso are active.  Hence the Statigtic will be large
when infection traces of agroup of cases are active at about the same time and cluster about casei.

We can explore whether infection traces of cases tend to cluster patialy about certain individuas
(e.g. super spreaders) through time. A datidic sengtiveto this patternis:

Q,Ek = éT. QiE,k,t (Equation 12)

t=0
% will tend to be large when active exposure traces for cases tend to cluster around the active

exposure trace of theith case.

2.1.7 Statisticsfor Modelling Sites of High Infection Transmission
We can dso ask whether the infection traces of cases cluster about specific locations (e.g. mixing
sites) that we refer to asafocus.

N
QIE,k,t = é. he i Ci &y (Equation 13)
j=1
Hereh . islif individud j isak nearest neighbour of the focus a timet, and O otherwise. The

satistic QF , , isthe count of the number of cases whose infection traces are k nearest neighbours

of thefocusa timet. Significance of this gatistic may be evaluated by constructing infection traces
for the controls as described earlier, and by then repeatedly alocating case control identifiers across
the N activity spacesthat arek nearest neighbours of the focus in order to construct the reference

digtribution for QFE’k’t . Notice this gatigtic can dso be implemented through time in amanner
analogousto equation 12.

2.2 Methods for Chronic Diseases

Jacquez et d (2005b) developed globd, locd and focused tests for casecontrol clustering of
resdentid histories for use with chronic diseases such as cancer.  These ddtidics are amilar in
concept to the ones presented above, using nearest neighbour relationships, case-control identifiers
and activity spaces as defined earlier in Ejuations 5. But rather than having the activity space
denote degtinations or “stays’ in a person’'s day, the locations recorded in Equation 1 are places of
residence over the last 20 or more years during which causative exposures might have occurred.
Jacquez et d (2005b) presented dozens of cluster Satistics for assessing different aspects of space
time patterns. We will employ the duration-weighted versons of their satisticsfor globd, local and
focused clustering.

To determine whether there is ddidicdly dgnificant case clugtering of resdentid histories
throughout the study area and when the entire study time period is consdered (a spatidly and
temporaly globd test) we will use satistic Q,' as defined in Equation AS of their gopendix. This
will tel us whether there is overdl globd clugtering of resdentid histories when the residentia

histories over the entire study period are consdered Smultaneoudy.

Should significant globd clustering be found, we next use ddigic Q" , as defined in their Equation

ik’

AB, to identify locd clugters of resdentia histories. This statistic will be evaluated for each of the



cases to identify those cases with low p-vaues. Notice these loca dtatistics are a decomposition of
the globd datidtic into loca contributions, and the sum of the locd datigtics is equa to the globa
gatigic.

We will use statistic Q* from Equation A8 to determine whether bladder cancer cases cluster near

the business addresses of industries known to emit bladder cancer carcinogens. This will dlow us
to evduate whether there was datidicaly sgnificant clustering about agivenindusry F (e.g. a
specific metal-plating business) over the life of its operation. We will use satistic Q. from

Equation A7 to identify those time intervals when there was case clugtering about industry F.

3. Bladder Cancer Data

A populationbased bladder cancer case-control sudy is underway in south eastern Michigan.
Cases diagnosed in the years 2000-2004 are recruited from the Michigan State Cancer Regigtry.
Controls are frequency matched to cases by age (x5 years), race, and gender, and are being
recruited using a random digit diding procedure from an age-weighted list. To be digible for
incusion in the study, participants must have lived in the eeven county study area for a leest the
past 5 years and had no prior history of cancer (with the exception of non meanoma skin cancer).
Participants are offered a modest financia incentive and research is gpproved by the University of
Michigan IRB-Hedth Committee. The data analyzed here arefrom 219 cases and 437 controls. As
part of the study, participants complete a written questionnaire describing their resdentia mohility.
The duration of residence and exact street address were obtained, otherwise the closest cross
streets were provided. See Jacquez et d (2005b) for geocoding procedures and accuracy.

Address higtories were collected for those industries believed to emit contaminants associated with
bladder cancer. These were identified usng the Toxics Release Inventory (TRI 2000) and the
Directory of Michigan Manufacturers (Manufacturer Publishing Co., 1946, 1953, 1960, 1969,
1977, 1982). Standard Industrid Classification (SIC) codes were adopted, but prior to SIC
coding, indugtrid classification titles were sdlected. Characteridtics of 268 indudtries, including, but
not limited to, fabric finishing, wood preserving, pulp mills, industria organic chemica manufadturing,
and paint, rubber, and lesther manufacturing, were compiled into a database. Each industry was
assigned a sart year and end year, based on best avallable data. Industries were geocoded
fallowing the same matching procedure as for residences. 89% natched to the address, 5% were
placed on the road using best informed guess, and as a last resort, and 6% were matched to town
centroid.

4. Results

Following Jacquez et al (2005b) we used k=5 nearest neighbourswhen evaduating the globd, locd
and focused tests. The test for globa clustering of residentia histories under the duration weighted
datigtic was highly sgnificant (Q;' =4853780063.0 case seconds, p=0.001 using 999 Monte Carlo

smuldaions). This means there is sgnificant clustering of residentia histories of cases rddive to
controls over the entire study area and duration of the study. We thus are justified in decomposing
this statistic into loca contributionsin order to identify those cases whose residentia histories tend to
be near other cases.



Using the local stetistic we identified 6 cases that are the nexus of local case clusters (Q", ranged

from 6027091200.0 to 4370889600.0 case seconds, p ranged from 0.004 to 0.009). We
consdered a locd duder sgnificant only when its pvaue was less than 0.01. Of these 6, five
resded in Oakland county, and onein Lansing. The map of cases and controlsin January, 1993 is
shown in Figure 2. A tha time four of the cases were on municipa water supplies that are
monitored for elevated arsenic levels, and 2 were on private wells. Because they are subject to
monitoring and government regulation, municipal sources do not have the high levels of arsenic that
are observed in certain ground waters in the study area. It thus is unlikely these cases can be
attributed soldly to high drinking water arsenic concentrations, since their sources of supply were
primarily municipa rather than private wels.
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Figure 2. Map of sgnificant local clusters of residentia histories at t=01/01/2003. Circles are cases,
croses are controls. Red indicates cases whose resdentia histories have p-values less than 0.01.
Underlying geography is the water supply source, with gold indicating private wells, and blue and
tan municipa supplies.
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Figure 3. Map of significant focused clusters of resdentid histories at t=01/01/1990. Circles are
cases, crosses are controls. Red indicates cases and industries whose address histories have p-
vaueslessthan 0.01. The indugtry that isthe focus of asignificant cluster of resdentia histories of
casesis shown asared triangle.

Could the spatid and tempora patterns of these cases be atributed to industrial sources? To
address this question we used the duration-weighted focus tests. We used the business address
histories of the 268 industries described earlier and found one industry with a focused p-vaueless
than 0.01 (Q: ,,, =2398550400.0 case seconds; p=0.004; 999 Monte Carlo runs). Thisindustry

is located in Oakland County and has one of the significant bladder cancer cases as a first nearest
neighbour (Figure 3).

5. Discussion

The results presented above are tentative as the study isin progress and cases and controls are il
being enralled. It is entirdly possible that the significant dustering found from these incomplete data
is an artefact of the order in which cases are being collected and will disappear when the complete
and fully vdidated data set is avalable. Our purpose in andyzing these data has been for
demongtration only, specificdly to illustrate how these novel globd, loca and focused tests for



clugtering of residentid histories are applied.

This paper derived new datitics for the identification of super spreaders and foci of infection for
infectious diseases, and revisited an andysis of a chronic disease (bladder cancer) to illugtrate the
identification of globa, locd and focused clustering of resdentid histories. The mgor difference
between the methods for infectious vs. the methods for chronic diseases is in the definition of the
activity space from which the nearest neighbour relationships are calculated. For infectious diseases
the time gpan of the infection process is a few days, for cancer the time lag between causative
exposure and diagnosis can be decades. Thus for infectious diseases we concern ourselves with the
quantification of dally and weekly activity patterns, for chronic diseases we congder residentia

histories.  The research described in this paper uses super sets of nearest neighbour matrices to
define the space-time geometry of cases and controls. Constructs based on the notion of geospatia
lifdlines are used to create “threads’ corresponding to daily activity patterns (for infectious diseases)
and residentid higtories (for the bladder cancer example). Logical extensons to this gpproach
include the mathematical definition of geometries representing weekly and seasond activity patterns.
The movement modd used in this paper is a ep function whereby an individua is conddered to
move insantaneoudy from one location to ancther.  While this is a reasonable abgiraction for
resdentid histories, where the time spent moving is very brief compared to the time spend residing
in a home, t may not be reasonable for modelling daily and weekly activity patterns.  Further
research is needed to develop moddling approaches appropriate for assessing daily exposures in
the workplace and while commuting.
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