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1. Introduction 
 
Soil types may be one of the most typical multinomial discrete geographical variables that are 
composed of multiple nominal classes. Soil types normally exhibit complex interclass 
dependences. To describe the auto-dependence of each soil type and the interdependence 
between different soil types, we need theoretically sound and practically verified spatial 
continuity measures. Conventionally, we use indicator variograms to describe the correlations of 
discrete variables. The constraints of indicator variograms are that cross-variograms cannot 
detect the directional asymmetry of class occurrence sequences and effectively represent the 
juxtapositional relationships of classes. This study uses a new spatial continuity measure – 
transiogram, as an alternative to characterize the spatial variability of soil types.  
 
One-dimensional Markov chains have long been used to describe spatial sequences of discrete 
variables in geosciences (Li et al., 1997, 1999). Recently, multidimensional Markov chain 
methods  for conditional simulation emerged for simulating lithofacies (Lou, 1996; Elfeki and 
Dekking, 2001), soil types (Li et al., 2004) and land cover classes (Zhang and Li, 2004, 2005). 
Conditional Markov chain simulation models normally use one-step transition probabilities as 
model parameter inputs and calculate multi-step transition probabilities from one-step transition 
probabilities under the first-order Markov chain assumption. Such an approach has many 
limitations. Transition probabilities with different numbers of spatial steps (or lags) actually can 
form a continuous one-dimensional transition probability diagram, which is denominated 
“transiogram” by W. Li. Directly using transiogram, not one-step transition probability, as an 
independent spatial continuity measure and tool for describing spatial variation structure of 
discrete variables will provide great conveniences for estimating transition probabilities from 
various kinds of data, visually displaying the spatial class/interclass dependence in the Markov 
chain framework, incorporating expert knowledge, and accounting for the high-order Markovian 
effect of discrete data. Markov chain models can thus directly draw needed transition 
probabilities at any lag from transiograms in a simulation. Therefore, transiogram will play the 
similar role in Markov chain geostatistics as indicator variogram does in kriging geostatistics.  
 
2. Transiograms 
 

According to W. Li, a transiogram is defined as a continuous transition probability diagram 
over the continuous distance, that is, )(hpij . Here ijp is the transition probability of random 
variable Z from class i to  j over a constant distance or lag h. With increasing h from zero to a 
further distance, )(hpij forms a continuous curve. )(hp ii represents the auto transiogram of class i 
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and )(hp ij (i ?  j) represents the cross transiogram from class i to j. Compared with indicator 
variograms, transiograms are direct probability representations of spatial change of classes; 
therefore they are physically meaningful, easy to understand and interpret. 

 
3. Material and Methods  

 
In this study, we apply the trans iogram theory to describe the spatial variability of soil types at a 
watershed scale. We choose a large piece of the soil survey map of the Iowa County, Wisconsin, 
to serve as the study area. The soil map is about 9656m × 9656m, containing 48 different soil 
types (soil series). We use raster data (for working with GIS) to estimate transiograms by 
discretizing the soil map into a raster with a pixel size of 20 × 20m. We estimated a large number 
of unidirectional real transiograms from the exhaustive soil map, and examined their 
characteristics. By comparing real transiograms with the transiograms derived from one-step 
transition probability matrices, we examined the high-order Markovian effect of soil type data. 
We thinned the soil map into a sparse dataset and estimate experimental transiograms from the 
sparse data. The experimental transiograms are fitted with basic transiogram models.   
 
From the transiograms estimated from a soil map (Figure 1) and a sparse dataset, we attempt to 
explain the following spatial variation characteristics of individual soil types and spatial relations 
between different soil types in the study area: proportions, parcel mean lengths, juxtaposition 
relationships, directional asymmetries, auto/cross correlation ranges, occurrence periodicities, 
common shapes of transiograms, and high-order Markovian effect. Based on the analysis, we 
suggest a set of suitable transiogram models for representing the spatial variability of soil types.  
 
4. Results 
 
Transiograms estimated from the soil type map show that (1) their sills are close to the 
proportions of corresponding soil types in the study area as expected, (2) auto-transiograms of 
soil types are normally close to exponential curves, and (3) cross-transiograms of soil types are 
mostly close to exponential or spherical curves, however, with apparent irregular periodicities, 
which represent a reflection of irregular change of natural landscape. Transiograms derived from 
one-step TPMs are mostly smooth exponential curves, with some of cross ones having a peak. 
While a TPM-derived transiogram only represents a first-order transition probability model, 
transiograms estimated from data apparently contain more information than that a first-order 
transition probability model can capture. The extra features of real transiograms are essentially a 
reflection of the high-order Markovian property of the data. Using one-step TPMs to derive 
transiograms provides a simple and cheap way in transiogram estimation and in Markov chain 
simulation but its application is limited because of the difficulty in acquiring reliable one-step 
TPMs and its inability in reflecting the high-order Markovian effect of data. By model fitting of 
experimental transiograms, the high-order Markovian effect of data may be incorporated into a 
simulation. 
 
Because transiograms can provide continuous transition probabilities at any lag needed in a 
Markov chain simulation and have the flexibility of incorporating high-order Markovian effect 
and expert knowledge, their introduction will also promote the capacity and application scope of 
Markov chain models and algorithms. For example, with this transition probability estimation 
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approach, Markov chain geostatistical algorithms, such as the 2-D Markov chain algorithm 
introduced by Li et al. (2004), will be ready to be extended for working with point data. For 
another example, by fetching transition probabilities from transiograms, even 1-D Markov chain 
models may incorporate more spatial variation characteristics into a conditional simulation.  
Given the significance of cross-transiograms in incorporating interclass dependence, 
transiograms will provide a potentially powerful tool for characterizing spatial variation 
structures of discrete variables.  

Auto-transiograms
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Fig. 1. Some transiograms estimated from a soil type map in the west-east direction. p(i,j) in 
legends means a transiogram from class i to j. Scales along the h axis are numbers of grid units in 
the direction.  
 
5. Conclusion 
 
Though facing lots of challenges, the Markov chain geostatistics is emerging. This new 
geostatistics is a non-covariance and non-kriging approach. Its major power is the ability of 
incorporating interclass dependences and dealing with many classes. Therefore, it is potentially 
very suitable for simulating complex categorical variables such as soil types. Accompanying this 
geostatistics is the herein introduced new spatial measure – transiogram. 
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