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Abstract 
This study investigates the “pixel-swapping” optimization algorithm for 
predicting sub-pixel land cover distribution. Two limitations of this 
method, the arbitrary spatial range value and the arbitrary exponential 
model of spatial autocorrelation are assessed. Various weighting functions, 
as alternatives to the exponential model, are evaluated in order to derive the 
optimum weighting function. Two different simulation models were 
employed to develop spatially autocorrelated binary class maps. These 
rasters were then resampled to generate sets of representative medium 
resolution class maps, along with the initial “ground truth”. Prior to 
conducting the sub-pixel allocation, the relationship between cell resolution 
and spatial autocorrelation, as measured by Moran's I, was evaluated. The 
form of this relationship was found to depend upon the simulation model.  
In all tested models, Gaussian, Exponential, and IDW, the pixel swapping 
method improved classification accuracy compared with the initial random 
allocation of sub pixels. However the results suggested that equal weight 
could be used to maximize accuracy and sub-pixel spatial autocorrelation 
instead of using these more complex models of spatial structure.  

 
 
1. Introduction 
One of the great challenges of modeling land cover using remotely sensed imagery is 
the mixed pixel problem: the problem that the level of spatial detail captured is less than 
the amount of detail that we would like, and that this sub-pixel level heterogeneity is 
important but not readily knowable. Traditionally, each pixel is classified into one of 
many land cover types (hard classification), implying that land cover exactly fits within 
the bounds of one or multiple pixels (Figure 1). However, many pixels consist of mixed 
land cover class composition. The solution to the mixed pixel problem typically centers 
on soft classification, which allows proportions of each pixel to be partitioned between 
classes. Sub-pixel class composition is estimated through the use of techniques, such as 
mixture modeling (e.g., Kerdiles & Grondona, 1996), supervised fuzzy c-means 
classification (e.g., Foody & Cox, 1994) and artificial neural networks (e.g., 
Kanellopoulos et al., 1992). The output of these techniques generally produces images 
that display the proportion of a certain class within each pixel. In most cases, this results 
in a more informative and less error prone representation of land cover than that 
produced using a hard, one-class-per-pixel classification (McKelvey & Noon, 2001). 
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However, the spatial distribution of these class components within the pixel remains 
unknown. The object of this paper is to overcome the mixed pixel problem by 
investigating a method for predicting sub-pixel land cover distribution. 

 

 

 

 

 

 

 

 

 

 
Several alternative algorithms have been proposed for allocating classes of sub-pixels. 
Aplin et.al (1999) developed a set of techniques to classify land cover on a per- field 
basis, rather than a traditional per-pixel basis, by utilizing the Ordnance Survey land 
line vector data. They concluded that the per-field classification technique was 
generally more accurate than the per-pixel classification. However, the necessity of 
accurate vector data sets limits this technique. Verhoeye and De Wulf (2002) introduced 
an approach that formulates the sub-pixel mapping concept as a linear optimization 
problem maximizing the spatial autocorrelation within the image. They produced a 
sharpened crisp land cover map without the need for finer spatial resolution data. The 
results showed a certain degree of success, but this non- iterative solution produced 
linear artifacts in the final map. Tatem et al. (2001, 2002) examined the application of a 
Hopfield neural network (HNN) technique to predict the spatial pattern of land cover 
features smaller/larger than the scale of a pixel by using information about pixel 
composition determined from soft classification. A Hopfield neural network was used 
as an optimization tool to make the output of a neuron similar to that of its neighboring 
neuron in order to maximize the spatial autocorrelation within the image. Tatem et al. 
(2003) applied the HNN technique to Landsat Thematic Mapper (TM) agricultural 
imagery to derive accurate estimates of land cover and reduce uncertainty inherent in 
such imagery.  The study demonstrated that the spatial resolution of satellite sensor 
imagery does not necessarily represent a limit to the spatial detail obtainable within land 
cover maps derived from such imagery.  

Atkinson (2001) examined the “pixel-swapping” optimization algorithm within a 
geostatistical framework as an alternative to the HNN algorithm. Like Verhoeye and De 
Wulf (2002) and Tatem et al (2001,2002,2003), Atkinson used the proportions of each 
land cover within each pixel to map the location of class components within the pixels. 

 
Figure 1. The pixel view of the world (From Fisher, 1997). 
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Theses class proportions can be derived from various soft classification methods, which 
are described above. Unlike Verhoeye and DeWulf (2002), a “pixel-swapping” 
algorithm iteratively allocates sub-pixels to maximize the contiguity of the landscape.  

Initially, this simple “pixel-swapping” algorithm randomly allocates class codes to sub-
pixels. The spatial arrangement of sub-pixel values is iteratively changed based on a 
distance weighted function (attractiveness, Oi) of each sub-pixel in order to maximize 
the correlation between neighboring sub-pixels. In this algorithm, the exponential 
weighting function is used to calculate the attractiveness:  
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        ijh  : the distance between the pixel location for Xi and Xj 
           a : the range parameter of the exponential model 
 

This simple algorithm is similar in character to simulated annealing. Simulated 
annealing is a family of optimization algorithms based on the principle of stochastic 
relaxation. An initial image is gradually changed so as to match constraints while 
honoring data values at their locations (Goovaerts, 1997). However, unlike the 
simulated annealing algorithm, which randomly selects two sites, the Atkinson’s 
optimization algorithm deterministically selects the two sites most in need of swapping 
based on the attractiveness index Oi. Consequently, the pixel-swapping algorithm is 
relatively fast since convergence occurs in far less iterations. However, the choice of the 
exponential weighting function is arbitrary, and the value of the non- linear parameter of 
the exponential model (a) is experimentally derived. This paper reports on research to 
improve the pixel-swapping algorithm by considering alternatives to these two 
limitations.  

Next, we describe how we test the parameters of this algorithm, and this is followed by 
the presentation of our results and discussion. The paper concludes with implication of 
our findings.  

 

2. Methods 
In this section, we introduce the data sets employed and discuss how we tested the 
various parameters of the Atkinson algorithm. The data sets described in the following 
were generated using C code developed by the authors, while Atkinson algorithm is 
implemented using custom code in the IDL programming language.  

(1) 

(2) 
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2.1. Simulation of Autocorrelated Images 

This case study employs simulated binary images that have 315 rows and columns with 
substantial positive autocorrelation. Two methods are used. Both methods create binary 
raster files that are spatially autocorrelated at a level specified by a target Moran’s I 
statistic set by the user (0.7, in both cases). Moran’s I is an indicator of spatial 
autocorrelation for area data (Bailey & Gatrell, 1995). For a spatial proximity matrix 
(W) spatial correla tion in attribute values (yi) is estimated as: 
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The Moran index is positive when nearby areas tend to be similar in attribute, negative 
when they tend to be more dissimilar than one might expect, and approximately zero 
when attribute values are arranged randomly and independently in space (Goodchild, 
1986).  

Method One uses an initially random distribution, while Method Two uses a fractal 
model to rapidly initialize a highly autocorrelated surface. Then a cell-swapping 
algorithm is employed to shift the spatial arrangement to arrive at the specified I. Since 
these two methods result in notably different images despite the same Moran’s I values, 
this study examines both simulated images (Figure 2, 3). We call the neutral image that 
is created by method one as Neutral A and that is created by method two as Neutral B. 
Both images contain 33 % of 1 (forest) and 67% of 0 (non-forest). In Neutral A, the 
forests patches are evenly distributed throughout the area. In Neutral B, the forest 
patches are larger and clumped at some locations. These images are aggregated to 
obtain coarser resolution images (Figure 4, 5). Therefore, we have “ground truth” 
available with which to test the results of these experiments on sub-pixel swapping. 

  
Figure 2. Neutral A: Cell size 1 Figure 3. Neutral B: Cell size 1 
 

(3) 
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Figure 4. Neutral A: Cell size 10 Figure 5. Neutral B: Cell size 10 
 

2.2. Spatial resolution 

In this study, we attempt to derive the optimum weighting function based on the degree 
of contiguity in the original map. Moran’s I is used to characterize the structure of the 
landscape. However, geographic phenomena generally are scale-dependent, which 
means the analysis results could differ considerably if different pixel resolutions are 
used. This is known as the modifiable areal unit problem (MAUP). The fundamental 
sources of uncertainty in remotely sensed data are caused by interactions between the 
scale of variation within the ground scene and the spatial resolution of the sensor (Friedl 
et al. 2001). The relationship between the Instantaneous Field of View (IFOV) of the 
sensor system and the spatial variability in the landscape will strongly influence the 
types of analyses that may be performed.  Thus, Moran’s I is a function of spatial 
resolution and looking at a value calculated at the original pixel resolution may be 
misleading. Therefore, we quantify the effect of spatial resolution on the empirically 
calculated I.  

The original Neutral A and B rasters, with cell sizes of 1, are resampled to cell sizes 2, 
3, 4, ..., 10. These reduced-resolution version of images are generated by summation of 
the input cells that are encompassed by the extent of the output cell, as demonstrated in    
Figure 6. Note that the resulting cell value ind icates the proportion of the cell occupied 
by class 1, matching the output of soft classification techniques. 

 
0 0 0 0 0 0                

0 1 1 1 0 0      4     2   

0 1 1 1 0 0              

0 1 1 1 0 0              

0 0 1 1 0 0      3     2   

0 0 0 0 0 0                

Figure 6. Resampled cell size 3 
 



 6 6 

The Moran’s I for each resampled image is calculated for both Neutral A and B. The 
first goal of this paper is to examine how these Moran’s I values change with the 
coarsening of the original fine images. 

2.3. Spatial Weighting Functions  

The Atkinson spatial weighting function can be expressed as a special case of the 
Exponential covariance model: 
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                     ijh  : the distance between the pixel location for Xi and Xj 
 r : range of the covariance 
 

The range is the lag distance at which pixels become independent of each other. 
Atkinson employs a = 5, which equates to a range of 15. In this study, various range 
values from 1 to 20 for the Exponential model are examined. As an alternative to the 
exponential model, the Gaussian model and the inverse distance weighting function 
(IDW) are examined. The weighting function using a Gaussian model is: 
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The inverse distance weighting function is : 
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For the Gaussian model, various range values from 1 to 20 are examined. For IDW 
model, various k values from 0 to 10 are examined.  

In addition to testing the various spatial weighting functions, an equal weight function is 
examined. Attractiveness Oi can be modeled simply as the sum of the values at the 
nearest neighbors.  
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n: the number of neighbors 

  :)( jXZ  value of the binary class z at the jth pixel location Xj 
 
This simplified attractiveness makes the algorithm simpler and probably faster. 

In this study, the resampled coarse resolution images, which have cell sizes of 5 and 7, 
are used to reproduce cell size 1 fine resolution image. For those with cell size 7, the 
number of iterations used is 13 and for those with cell size 5, the number of iterations 
used is 9. The number of nearest neighbors used is 24 (the second neighbor) for both 
cell sizes. 

(4) 

(5) 

(6) 

(7) 
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In all cases, Moran’s I is used as an index of the spatial contiguity of the landscape, and 
Percent Correctly Classified (PCC) is used as a classification accuracy assessment. PCC 
is calculated by the ratio of the sum of correctly classified sub-pixels in all classes to the 
sum of the total number of sub-pixels.  

 

3. Results and Discussion 
Figure 7 shows the relationship between Moran’s I and resampled coarse resolution 
images for both neutral images.  In the case of Neutral A, as the resolution decreases,  
Moran’s I decreases, which means the image is less autocorrelated than the original one. 
In the case of Neutral B, Moran’s I does not change much with the resolution change, 
and all I values are higher than that for the original image, which means the coarsened 
image is more autocorrelated than the original one. While the two original neutral 
images have the same Moran’s I value, the pattern of spatial distribution are quite 
different: for Neutral A, the patches are distributed evenly throughout the area, and fo r 
Neutral B, the patches are large and clumped at some areas. Therefore, as the images 
are coarsened, the distribution differences become more apparent. Thus, the Moran’s I 
value is dependent on the underlying process generating the autocorrelated pattern and, 
therefore, characterizing the relationship between resolution and Moran’s I will be 
challenging without knowing the distribution pattern of the landscape.  

Figure 8 demonstrates the effectiveness of the pixel-swapping method through iteration 
using the exponential model. Classification accuracy and Moran’s I increase until 
iteration 13 and level off for both neutral images for cell size 7. The results imply that 
the algorithm successfully attempts to increase the degree of spatial autocorrelation, and 
improves classification accuracy within a pixel. Cell size 5 images show similar results. 
However, the appropriate iteration number increases with the resampled cell size 
increase, since there are more sub-pixels to be swapped within a pixel. For the 
following examination, iteration 13 for cell size 7 and iteration 9 for cell size 5 are used.  

For the Exponential and the Gaussian model, range values from 1 to 20 are tested. 
Moran’s I and classification accuracy increase initially and then level off (Figure 9, 10).  
Although the graph for the IDW model has a quite different appearance to the other 
models (Figure 11), it implies the same meaning as the other models. All results suggest 
that as the weight becomes more similar, Moran’s I and overall accuracy increase. 
Therefore, we also tested the equal weight function (Figure 12). 

 The figures demonstrate that the equal weight function can produce similar results to 
the original exponential model. Thus, employing an equal weighting scheme appears 
preferable since it can produce similar results and may also be computationally faster 
than using a weighting function. 
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Resolution vs Moran's I
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Figure 7. Resolution test  

Iteration test
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Figure 8. Iteration test (Exponential, cell 7to1, range=15) 
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Exponential Results
(Neutral B: Cell7to1)
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Figure 9. Range test (Exponential, cell 7to1) 
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Figure 10. Range test (Gaussian, cell 7to1) 
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Figure 11. K-value test (IDW, cell 7to1) 
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Iteration test
(Neutral B, Equal weight)
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Figure 12. Iteration test (Equal weight, cell 7to1) 
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4. Conclusions 
This study investigates the “pixel-swapping” optimization algorithm for modeling sub-
pixel land cover distribution. We examine the effect of spatial resolution on Moran’s I 
and find that the relationship is highly image dependent: different underlying process 
models may give rise to images with identical Moran's I values but with very different 
spatial scaling properties. Two limitations of this method, the arbitrary spatial range 
value and the arbitrary exponential model of spatial autocorrelation, are assessed. 
Various weighting functions, as alternatives to the exponential model, are eva luated in 
order to derive an optimum weighting function. In all tested models, Gaussian, 
Exponential, and IDW, the pixel swapping method improves classification accuracy 
compared with the initial random allocation of sub pixels. However the results suggest 
that equal weights could be used to maximize accuracy and Moran’s I value instead of 
using more complex models of spatial structure. 

One limitation of the pixel-swapping method relates to the fact that the algorithm works 
best for highly contiguous landscapes like these in this study, since the algorithm 
attempts to maximize the spatial autocorrelation. However, not all landscapes are highly 
contiguous. Therefore, it is necessary to investigate methods to incorporate the degree 
of autocorrelation of the landscape (if such information is available) without 
maximizing the autocorrelation.  

Several potential avenues for further research present themselves. In this study, Moran’s 
I is used as an index of the spatial contiguity of the landscape, and Percent Correctly 
Classified (PCC) is used as a classification accuracy assessment. There are alternative 
ways to characterize landscape. Various landscape indices, such as mean patch size, 
number of patches, and total edge length, can be used. These indices are employed to 
quantify landscape structure in terms of landscape configuration and landscape 
composition (Haines-Young & Chopping, 1996). The effect of sub-pixel models on 
these alternative metrics is unknown; they may show markedly different behavior than 
the results for Moran's I identified in this work. Alternatively, the employment of 
different metrics may provide a much richer basis for modeling landscape pattern at the 
sub-pixel scale. 
 
A second issue involves the complexity of the problem under examination. This 
research only considered binary class maps (e.g. forest/non-forest). Since our models of 
the landscape, in general, are composed of a variety of land cover types, it is vital to 
investigate ways to handle multiple cover classes at the sub-pixel level.  
 
The “pixel-swapping” approach can benefit researchers who employ remote sensing 
imagery.  In many cases, the satellite sensor that provides large spatial coverage has 
insufficient spatial detail to identify landscape patterns. Therefore, application of the 
super-resolution technique described in this paper could potentially solve this problem 
by providing detailed land cover predictions from relatively coarse resolution satellite 
sensor imagery.   
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