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Abstract 
This paper examines the use of genetic programming and agent-based modeling 
as an isomorphic analog of bounded rationality in individual decision making.  
This approach is explored in the context of land change modeling in the southern 
Yucatán peninsular region of Mexico.  Results are reported for experiments 
linking varied implementations of genetic programming to features of bounded 
rationality.  
 

 
1.   Introduction 
Global environmental change is occurring at a rate and magnitude unparalleled in human 
experience.  Particularly important is human activity that impinges on land-use systems and 
surficial features, known as land-use and land-cover change (LUCC or land change).  Central 
to understanding this change is use of spatially explicit, dynamic models that examine 
decision making, societal context, and ecological relations (Brown et al., 2004).  While there 
is no single best approach to modeling LUCC, there is considerable interest in methods based 
in the complexity sciences, such as genetic algorithms, cellular automata, and artificial neural 
networks (Agarwal et al., 2002; Verburg et al., 2005).  Also attracting interest are agent-
based models, collections of semiautonomous software programs, or agents, that represent the 
complex behavior of interacting entities (Janssen, 2003; Parker et al., 2003). 

A key challenge to the use of agent-based models for LUCC research—and one 
reflective of a perennial issue in land change science—is representing agent decision making.  
A variety of approaches are employed, including (but not limited to) heuristics, vector 
weighting schemes, statistical modeling, belief-desire-intention models, and classifier 
systems (Parker et al., 2003).  Regardless of the method used, there are challenges with 
respect to memory, optimization, complexity of strategies, learning, innovation, and 
communication with other agents and the larger decision-making environment.  This work 
has ramifications for geocomputation and its cognate fields of human-environment modeling, 
computational intelligence, decision sciences, and complexity research.  

Issues raised by representing agent decision making are explored here through use of 
the SYPR Integrated Assessment (SYPRIA), named for the southern Yucatán peninsular 
region of Mexico, which focuses on decision making in the context of institutions and the 
environment (Manson, 2004b, 2005a)  This paper reports on several aspects of how SYPRIA 
represents rationality in agents with genetic programming.  In essence, an agent is invested 
with a population of genetic programs and can thereby be considered as having multiple 
strategies with which to deal with structural changes in the environment.  There are a number 
of issues, however, raised by how the corollaries of rationality can be legitimately reflected in 
genetic programming.  Tests are detailed for the genetic programming parameters of creation 
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mechanisms, number of generations, population size, selection mechanisms, and fitness 
measures.  These parameters are examined with respect to corollaries of rationality related to 
memory, bounding of computational resources, complexity that strategies can achieve, agent 
learning, innovation, exploitation of effective strategies, and interagent communication.  

 
2.   Land change and models of decision making 
Land change in coupled human-environment systems is almost by definition a function of 
human decision making (Agarwal et al., 2002).  Nonetheless, Irwin and Geoghegan (2001) 
note that land change models tend to ignore individual decision making or rely on ad hoc 
theoretical frameworks in order to focus on larger-scale social and ecological determinants of 
land change.  They argue for a greater role for explicit incorporation of theories of individual 
decision making, specifically economic ones, into LUCC models.  More broadly, given the 
variety of settings in which land change is influenced by non-economic factors, standard 
economic models of decision making can be seen as one of several that relate to individual 
decision making and land change (Geist and Lambin, 2001). 
 
2.1   Models of decision making: perfect and bounded rationality 
The most commonly accepted model of decision making in the social sciences—and by 
extension land change models that actively engage with decision making—is rational choice 
theory.  Under the rubric of rational choice, perfect rationality has become the standard model 
of decision making by drawing on several assumptions that grant it power and tractability. 
Key among these is utility maximization, which holds that a given decision maker chooses 
from a set of mutually exclusive exhaustive alternatives the one that gives greatest utility 
(after meeting constraints and meeting stable individual preferences).  Also important is how 
actor  determine the optimal alternative through perfect computation and complete 
information on alternatives jointly distributed with those of other actors (Myers and 
Papageorgiou, 1991) 

Decision making also may be viewed through the lens of bounded rationality.  The 
longstanding normative and mathematical tradition of rational choice has been joined by a 
more descriptive empirical focus on the individual and societal dimensions of decision 
making (Cook and Levi, 1990).  This exploration has lead to consideration of alternatives to 
perfect rationality.  Key among these is bounded rationality, introduced by Simon as “rational 
choice that takes into account the cognitive limitations of the decision maker – limitations of 
both knowledge and computational capacity.” (1997: 267)  Actors under bounded rationality 
do not optimize because they possess limited computational resources and information on 
which to base decisions.  Actors instead satisfice—make suboptimal yet acceptable 
decisions—with a small cadre of partial strategies based on imperfect information.  Actors 
improve strategies through a Darwinian process of learning-by-doing that balances path-
dependent exploration of new strategies and exploitation of existing strategies (Gigerenzer et 
al., 2001).  Attempts to reconcile bounded and perfect rationality tend towards rolling 
boundedness into perfect rationality (e.g., by treating the time necessary for choice generation 
as another optimization factor or by using probability to approximate subjectivity) but these 
approaches do not genuinely address underlying issues (Conlisk, 1996; van den Bergh et al., 
2000).  Bounded rationality and perfect rationality therefore remain different yet 
complementary theories of decision making that can be applied to land change modeling.  

The choice of theoretical framework is important to representing the decision making 
of individual actors in an agent-based model. Decisions about where agents choose to change 
land is a multicriteria evaluation problem (for review see Collins et al., 2001), where an actor 
chooses locations that for land change as a function of suitability S of these locations for 
given production activities: 
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as a function of continuously varying spatial factors { }mvvV ,,1 K= , a set of factor weights 

{ }mwwW ,,1 K= , and a set of Boolean constraints { }nbbB ,,1 K= .  Equation (1) identifies for 
each agent the propensity for agriculture, for example, as a function of environmental and 
social factors over space.  Agents can treat Equation (1) as a symbolic regression problem 
where response-variable observations are used to estimate parameters of independent 
predictor variables.  Function ( )xf  is known solely through observations { }nxxX ,,1 K= .  The 

observed value of the function at ix , or ( )ixf , is denoted if  and is related to the true value if   

through error defined as iii ff −=ε .  Symbolic regression approximates ( )xf  as ( )xf̂ : 
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comprised of functions ( )xjφ  with coefficients ja  estimated to minimize iε over the 

observations (after Ralston and Rabinowitz, 2001) given by { }nxxX ,,1 K=  as locations in 
spatial layers given by V and B.  

Suitability may calibrated against a dependent variable as one would in any inductive 
alternative oriented model (Carroll and Johnson, 1990).  The means of approximating ( )xf̂  is 
dependent on the theoretical imperatives of the underlying decision-making model. There is a 
host of analytical methods for solving those problems that almost without exception are based 
in perfect rationality (Manson, 2004a).  There is also a growing number of methods suited to 
bounded rationality, however, and of these, particularly promising for modeling decision 
making are evolutionary programming methods that draw on biological metaphors to create 
computer programming systems (Eiben and Schoenauer, 2002). 

 
2.2   Evolutionary programming for land change modeling 
Evolutionary programming techniques are applied to decision making in two general ways: 
functional and representational (Edmonds, 1999).  The functional use is the most common, 
where an evolutionary program is used to conduct a strict instrumental search for complex yet 
well specified problems.  Optimization of complex discontinuous functions, for example, is 
an ideal task to which evolutionary programs are be applied.  In some domains, particularly 
those characterized by noise and complexity, these programs outperform other methods 
(Koza, 1992; Kaboudan, 2003).  The most popular use of evolutionary programming in land 
change modeling is as a functional optimizing tool for land-use planning (Balling et al., 1999; 
Matthews et al., 1999; Diplock, 2000; Krzanowski and Raper, 2001; Xiao et al., 2002). 

The less common representational use of evolutionary programming is oriented 
towards characterizing situations where human do not conform well to the perfectly informed 
and rational decision makers conceived under rational choice theory (Edmonds, 2001).  The 
link between bounded rationality and evolutionary programming is weakly isomorphic—
suggestive similarities are borne out empirically and theoretically but few believe that 
humans actually use genetic programs for cognition (much in the same way, one could 
suppose, that humans are not strictly rational) (Dosi and Nelson, 1994; Chen, 2003). 

Evolutionary programming can be used explicitly to represent land-use decision 
making by having agents solve Equation (1) as a symbolic regression problem.  Per Equation 
(2), function ( )xf  is known solely through observations { }nxxX ,,1 K= ; in the rubric of 

evolutionary programming, training set ( )( ){ }XoofoO ∈= ,  is drawn from the problem 

domain to train a set of programs ( )( ){ }XkkgkK ∈= ,  that are strategies that approximate 
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function ( )xf̂ .  These programs evolve to minimize error ε  over samples in a manner 
similar to how other regression methods use error-driven minimization techniques such as 
ordinary least squares (OLS).  Error ε  for a genetic program is given by an error function; 
merits of varying fitness measures are explored in detail below. 

Of particular interest here is a variant of evolutionary programming termed genetic 
programming.  Genetic programs are trees are composed of atomistic terminals and functions 
in a branching structure.  In terms of the underlying biological metaphor, the tree that 
constitutes a genetic program is equivalent to that program’s genetic code and each function 
and terminal is analogous to a gene.  Each terminal or function is a node in a branching 
network.  Consider a simple tree that corresponds to the symbolic regression equation (Y = β1 
X1+ β2 X2).  This equation can be represented by a tree that possesses multiple branches, 
where one branch is composed of the terminals (X1) and (β1) and another by (X2) and (β2), 
both joined by the multiplication function (×) that is implicit in the regression equation (Y = 
β1 × X1+ β2 × X2).  These subbranches in turn are joined by the addition function (+) to create 
the entire tree.  This function (+) occupies the root node of the tree.  While limited to a single 
root, trees are essentially limitless in terms of the number of branches they can have.  The 
depth of the tree is the number of branches spanning the longest descent of branches from the 
root to terminals while the length of the tree is the total number of functions and terminals. 

Terminals, such as β1, X1, β2, and X2, are typically suggested by the problem domain.  
In terms of Equation (1), the terminals are values drawn from spatial factors used by agents in 
their decision making.  A special class of terminals is ephemeral constants, which take the 
value of random numbers in order to broaden the applicability of genetic programs to 
symbolic regression.  If a genetic program tree were composed solely of terminals that 
correspond to spatial variables, it is unlikely that a suitable tree could evolve to solve the 
symbolic regression equation, since the genetic program could only work with values given 
by the spatial variables.  Functions compose all nodes between the terminals and the root.  
Genetic programs can use functions of differing complexity, although in general there is an 
emphasis on simple functions in order to allow the evolutionary program to evolve higher 
functions.  An arbitrarily complex function foisted upon a genetic program, for instance, may 
contain inefficiencies for which the genetic program spends resources attempting to 
compensate (Banzhaf et al., 1998). 

There are several means by which genetic programs evolve over time (Figure 1).  In 
the genetic program system there is a population K  of size M of genetic program trees.  
Initially, these trees are completely random in their structure and choice of terminals and 
functions.  This initial population is generation 0.  Members of generation 0 vie for the 
opportunity to pass on their genetic material to the next generation, or generation 1; in 
essence, the genetic program system manages a series of iterations in which a parent 
generation seeks to create offspring in a child generation.  In the next iteration of the genetic 
program system, the child generation becomes the parent generation seeking to create a new 
child generation.  The children in generation 2 are in essence the grandchildren of generation 
0.  A typical genetic program system run may oversee the evolution of as few as three 
generations and upwards of several thousand generations to a predefined limit G. 
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Figure 1.  Genetic programming system 
 
Child genetic programs result from one of three different kinds of operation:  

reproduction, crossover, and mutation.  Reproduction is analogous to asexual reproduction or 
cloning, whereby a genetic program in the parent generation makes a copy of itself for 
insertion into the child generation.  Crossover is similar to sexual reproduction, where two 
parents create a single offspring that carries a mixture of the parents’ genes.  Mutation is a 
special form of reproduction in which a parent creates an identical child but in the process, a 
gene is randomly mutated.  The genetic program system must have some means of selection 
by which parents are chosen to create offspring.  In Darwinian terms, fit parents have a higher 
likelihood of finding a partner and are more likely to find a partner of similar fitness (fk).  
Over generations, strategies with low fitness are weaned out and replaced with ones that are 
more successful.  Selection procedures and their effects on genetic program fitness are 
considered in detail below. 

Each genetic program operator performs a different role in improving population 
fitness in addition to having ramifications for representing bounded rationality (below).  
Reproduction is useful for maintaining coherence of good strategies across generations.  
Mutation is necessary to ensure that terminals and functions do not disappear from the 
population, as functions can be lost over generations when early successful strategies do not 
use them and the offspring of these strategies propagate quickly.  This loss of diversity can 
reduce overall population fitness in the end.  Crossover is the driving force behind evolution 
since it quickly culls the population of substandard strategies while creating potentially better 
strategies through the intermingling of well performing genetic programs (Korkmaz and 
Ucoluk, 2004). 
 
2.3   Genetic programming and bounded rationality 
Under a representational view of using genetic programs to model decision making, a genetic 
program tree represents a single strategy designed to solve Equation (2).  The use of genetic 
programs as an isomorphic analog to bounded rationality is supported by the emerging field 
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of agent-based computational economics, where these approaches have been applied to 
financial markets, macroeconomics, innovation, environmental management, and labor 
economics (Tesfatsion, 2002).  There is a growing body of research that uses evolutionary 
programming to examine decision making, particularly in an agent framework (Chattoe, 
1998; Beckenbach, 1999; Chen, 2001). 

In an agent-based model framework, individual genetic programs can be assigned to 
single agents or an entire population of strategies may be invested in an individual agent.  
These are termed the “population interpretation” and the “mental interpretation” respectively 
(Chattoe, 1998).  The population interpretation is more common because it reduces the 
computational complexity of the genetic program system.  The population interpretation 
found an early niche with economic modeling designed to prove the compatibility of models 
based on genetic algorithms (the precursor to genetic programs) with more traditional 
economic models.  This work treats each genetic program as its own agent, or treats each 
program as representing the single strategy held by each agent (Holland, 1992; Arifovic, 
1994).  One corollary of the population interpretation is that it introduces a global fitness 
function and agents are granted perfect information, since the single strategy of each agent is 
compared against that of other agents.  This common comparison can be useful in situations 
where models of social learning assume complete interchange of information (Vriend, 2000) 
but may not hold with the informational limits imposed by bounded rationality.  Furthermore, 
it is difficult to justify this model when one is concerned with how individuals face the world, 
as this use of genetic programs muddies the correspondence between particular individuals 
and particular trees. 

In contrast, the mental interpretation imbues each agent with a population of 
strategies that are considered alternative models of the world.  The member of this population 
with the highest fitness is accorded the status of the agent’s prime worldview and the agent 
uses this one to guide its behavior.  In a land change context, the fittest genetic program 
represents a household multicriteria evaluation strategy.  An advantage of using the entire 
genetic program population for a single agent is that precepts of bounded rationality are 
easier implement.  Bounded memory and limited computational ability are easier to 
implement by simply limiting the number of trees available to a given agent and the depth or 
length that these trees can achieve.  The mental interpretation also allows multiple strategies 
to coexist even when only one is used as the basis for agent action.  This is analogous to an 
agent having a series of rules of thumb whose use varies according to the agent’s current 
situation, which allows the agent to deal with structural changes in the environment.  If each 
agent possesses its own cadre of genetic programs that represent alternative strategies, every 
actor can have its own, subjective, fitness criteria defined by its local environment.  Evolution 
can therefore be a local phenomenon even when a single test is employed to measure fitness 
across all genetic programs.  There is also evidence for coevolution, whereby the 
evolutionary environment is not necessarily independent but determined in part by the actions 
of evolving objects (Holland, 1995). 

Learning as represented by evolutionary search techniques can be seen as a contest 
between deduction and induction, or alternatively, between exploitation and exploration.  A 
search algorithm must balance the two in that exploration is necessary to find new areas in 
the search space and exploitation allows the technique to employ the strategies already found.  
A random search, for instance, is highly exploratory at the cost of not exploiting past 
searches.  A genetic program represents the use of intelligent shortcuts, in the form of 
previous generations of candidate solutions, in finding better candidate solutions.  Genetic 
programming can be considered deductive or exploitive because current knowledge and 
understanding about the problem domain leads to new knowledge.  At the same time, it is 
deductive in that strategies are tested against reality; strategies become hypotheses that are 
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played out against the environment.  Usefully, evolutionary programs tend towards a 
metastable state that hovers between asymptotic convergence and explosion (Dawid, 1999).  
In other words, a genetic program never stops experimenting with, and trying, new strategies 
(Riechmann, 1999).  Reproduction equates with exploitation or persistence of good strategies 
over time, as it allows the agent to exploit effective programs that it has already discovered.  
This is the essence of rules of thumb because it offers a good solution that is very efficient in 
terms of not having to devote effort to search for new candidate solutions at the cost of not 
finding new and potentially better solutions.  Mutation is accorded the status of innovation  as 
a form of exploration (Chen and Chie, 2004).  Random errors and accidents are no strangers 
to decision-making theory.  Many human innovations have come about by accident but the 
decision maker can deliberately incorporate random changes in strategy into later 
generations. 

Interaction, communication , and learning are broad interpretations given to 
crossover, in the form of agents engaging in imitation, communication, and development of 
new strategies through combination of older strategies (Pingle, 1995; Dawid, 1997).  
Interaction occurs between agents when agents trade strategies and within an agent when 
crossover takes place among strategies in the population contained by that agent.  Either way, 
crossover is a form of imitation and communication where agents can borrow strategies from 
other agents or create new strategies.  Treating crossover as interaction poses several 
challenges to the task of linking evolutionary program to decision making (Bosch-Domenech 
and Vriend, 1998; Chattoe, 1999).  One is related to genotype visibility, or the extent to 
which individuals glean knowledge of other individual’s genotypes.  Linking phenotype and 
genotype supports the assumption that it is easier to perceive other’s actions that it is to 
understand their thoughts.  Households may share similar organization and underlying 
precepts, for instance, but behave differently within their environment.  In the meantime, the 
computational conceit of genetic programs is that function follows form and that the structure 
is directly tied to action.  In addition, it can be argued that an agent should not be able to 
reconstruct the underlying strategy of another agent merely by examining the outcome, not 
only because of genotype-phenotype correspondence, but also because it implies direct 
communication between agents (Beckenbach, 1999).  Alternatively, crossover may be a way 
to implement search costs since genetic programs are chosen probabilistically and therefore 
less than perfect programs can engage in crossover (Brenner, 1999).  Moreover, crossover 
represents imperfect information because it can be a destructive force as well as a 
constructive one in terms of overall population fitness.  While offspring generally possess 
greater fitness than parents do, a minority of offspring fare less well when the two inherited 
subtrees fail to work together well. 

Limits to computational resources can be implemented in genetic programs.  
Memory is implicit in offspring programs because subtrees are passed on from parents and 
the mental interpretation gives actors, not individual programs, access to longer-term 
variables or environmental variables.  Learning time is also a potential disconnect between 
genetic programming and decision making.  Humans typically have fewer than ten or so 
opportunities to learn strategies when many evolutionary techniques require hundreds of 
repetitions (Arthur, 1993; Andreoni and Miller, 1995).  One solution is to ignore this 
dilemma by holding that genetic programs are not a direct analog of decision making but 
instead are just proxies to decision making.  A better solution equates the power of human 
imagination with multiple generations of genetic programs.  This view credits the decision 
maker with the ability to mentally pursue and weight alternative strategies and equates this 
process with many genetic program generations. 

In summary, multicriteria evaluation can be recast as a symbolic regression problem 
that can be solved with genetic programs.  Genetic program trees are composed of terminals 
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chosen from the problem domain to reflect pertinent factors while functions are chosen to 
allow candidate solutions to solve the symbolic regression problem.  The mental 
interpretation, whereby each agent is given a population of genetic program trees, allows 
agents to have multiple simultaneous strategies and grants a number of advantages over the 
more common population interpretation.  Genetic programs evolve through reproduction, 
mutation, and crossover and these operations are accorded, respectively, the status of 
persistence, innovation, and interaction, communication, and learning.  Genetic programs 
therefore provide a convenient means of representing many facets of decision making. 
 
3.   Methodology 
SYPRIA is named for the southern Yucatán peninsular region, which lies on Mexico’s border 
with Guatemala (Figure 2).  The 22 000 km2 expanse is the site of potentially massive 
deforestation that threatens one of the largest remaining subhumid tropical forests and its 
associated socioeconomic and biogeochemical systems.  The chief proximate cause of this 
land change is smallholder agriculturalist households whose production activities include 
swidden cultivation, agroforestry, modest logging, and market cultivation.  These households 
are represented within SYPRIA by agents in an agent-based model and each agent is 
equipped with genetic programs in accordance with the mental interpretation noted above.  
Fuller explorations of SYPRIA are considered elsewhere (Manson, 2000, 2004b, 2005a; 
2005b). 
 

 
 

Figure 2.  Southern Yucatán peninsular region 
 
There are a variety of parameters governing genetic program behavior, such as 

population size or mutation rate, which are important for modeling decision making.  The 
values for these parameters, outlined in Table 1, were initially selected from the literature.  
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Parameter Value 
Population size (M).  Number of genetic programs in the population. 100 – 1000 

Default: 300 
Generations (G).  Number of generations over which genetic programs evolve. 10 – 100 

Default: 50 
Crossover Probability (Pc).  Probability that a given genetic program will be the 
offspring of two other programs as opposed to propagation or mutation. 

0.7 – 0.9 
Default: 0.9 

Mutation Probability (Pm).  Probability that a given genetic program will mutate in 
a generation. 

0.001 – 0.9 
Default: 0.001 

Reproduction Probability (Pr).  Probability that a given genetic program will be 
the offspring of two other programs. 

1 – (Pc – Pm)  

Internal crossover points (%).  Probability that a given genetic program will be 
crossed or mutated at a function instead of a terminal.  This also determines the 
odds that a newly introduced mutation is a function. 

0.5 – 0.9 
Default: 0.7 

Creation depth.  Maximum depth of programs when created. 6 
Crossover depth.  Maximum depth at which a program may be crossed with 
another. 

17 

Function set.  Functions that can act as tree nodes. + – ÷ × 
Random number.  Probability of choosing a random number as a terminal.  These 
numbers, also termed ephemeral constants, are necessary for a genetic program to 
solve a symbolic regression problem. 

0.3 – 0.7 
Default: 0.5 

Program length.  Limit placed on maximum genetic program length.   100 – 1000 
Default: 500 

Tournament size.  Tournament is held between X individual genetic programs, 
where X is equal to the value of tournament.   

2 – 7 
Default: 5 

 
Table 1.  Genetic program parameter settings 

 
In order to test the effects of key parameters, SYPRIA was run 600 times in a test of 

the five parameters of interest.  The result of interest is the average fitness scores of the 
genetic programs created by the model, or 

P
f , the population fitness.  This score is a 

measure of how well the genetic program performs as a candidate solution to the multicriteria 
evaluation problem defined in Equations (1) and (2).  Linear regression and ANOVA 
methods are used to elucidate the effects of varying configurations of model parameters. 
 
4.   Results 
 
4.1   Fitness and error function 
The heart of genetic programming lies in breeding better strategies.  Parents are selected with 
a variety of selection schemes that probabilistically choose them based on their fitness.  The 
sum fitness of a population is denoted Pf , average fitness Pf , and the fitness for a given 
individual is kf .  As discussed above, the fitness function minimizes error ε  over samples, 

much like other regression techniques.  Candidate solutions, ( )( ){ }XkkgkK ∈= , , are 

compared to the training set, ( )( ){ }XoofoO ∈= , .  The fitness function gives feedback to 
enable learning in the genetic program system by comparing how well genetic programs do 
against the learning set.  The fitness function is applied to a standardized measure of fitness, 
whereby the performance of genetic programs is rescaled every generation to give the best-
performing individual a fitness of zero. 

The most popular form of error function in summed error, or the sum of the absolute 
value of the differences between program output and the corresponding learning set: 

∑
=

−=
1i

ii okε  (3) 
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Another form of the error function calculates mean error in order to include the effect of 
sample size, but is otherwise identical to total-sum-of-errors formulation:  

nok
i

ii∑
=

−=
1

ε  (4) 

Total and mean summed errors are used because they do not rescale the results very much, 
and are seen to represent the most basic measure of error (Michalewicz, 1993; Banzhaf et al., 
1998). 

Two other versions of the error function rescale values in a manner often used with 
other forms of symbolic regression, such as OLS.  The first calculates the sum of the squared 
differences between O and K, given by: 

( )∑
=

−=
1

2

i
ii okε  (5) 

Squared error is useful in situations where the programmer wants to dampen small errors and 
highlight the effects of large errors.  Conversely, the programmer may want to dampen the 
effects of large deviations by calculating the sum of square root of errors: 

( )∑
=

−=
1

5.0

i
ii okε  (6) 

Despite some debate (Banzhaf et al., 1998; Langdon, 1998), changing the error function has 
little discernable effect when applied to the decision-making problem explored here.  An 
ANOVA analysis on ln (

P
f ) for differences between error metrics demonstrated that they are 

not statistically significant (p = 0.3374, F = 1.13, df = 596).  The SYPRIA framework uses 
sum-of-squared-errors formulation given its similarly to error functions used in other 
methods. 

 
4.2   Creation 
There are two basic ways of creating genetic programs.  The first it to grow a full genetic 
program, which entails extending all of its branches outward from the root to achieve a 
uniform, maximum depth marked by terminals and everything above this depth as a function.  
Creating a variable tree allows its branches to vary in depth up to a preset maximum value.  
Full genetic programs are therefore symmetrical and uniform in appearance while variable 
trees are more ragged, since some branches have terminals much closer to the root.  Full 
programs are useful where uniformity of trees is desired in order to reduce variation in 
eventual program size, while variable trees are designed to introduce diversity in the initial 
genetic population.  

In addition to these two basic techniques, genetic programs are subject to the further 
twist of ramping .  Each population is divided into subpopulations, each of which is given a 
maximum depth.  A population of ten full programs, for instance, could be divided into a 
ramped full population consisting of five subpopulations of two members each.  The 
members of the first group would grow to a depth of two, the second a depth of four, and so 
on to the fifth group’s members having a depth of ten.  A ramped variable population  has a 
maximum depth that ranges from two for the first pair, four for the second pair, and so on to 
the fifth group’s members having a maximum depth of ten, as with a ramped full population, 
but branch length can vary.  Finally, a population can be created with both methods, to create 
a ramped variable/full population.  Ramping is meant to introduce genetic diversity into the 
population. 

Between-group variation in genetic program fitness for creation methods is significant 
at the 99.99% level but not all pair-wise comparisons are significant, according to a one-way 
analysis of variance of ln ( Pf )  (p = 0.0000, F = 10.61, df = 596).  Several pairings are also 
significantly different from one another in their effects on genetic program fitness (Table 2).  
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In general, the largest differences occur between full or variable when either one is ramped.  
The only two combinations that are uniformly significantly different are ramped variable 
combined with either full or ramped full. 

 
Likelihood of between-class variance by creation type  

(Difference [ ± ] in ln ( Pf ) and p-values [p]) 

Variable Full Ramped 
Full/Variable 

Ramped 
Variable 

Creation type  

±  p ±  p ±  p ±  p 
Full -0.152 0.000       
Ramped Variable/Full -0.058 0.486 0.094 0.023     
Ramped Variable -0.024 1.000 0.129 0.000 0.035 1.000   
Ramped Full -0.141 0.000 0.011 1.000 -0.083 0.079 -0.118 0.001 

 
Table 2.  Creation type: between-class variance 

 
In terms of average population genetic program fitness, Pf , there is a small, 

significant difference of means between the methods.  Full tends to outperform variable 
somewhat but only ramped variable does noticeably less well than the other methods (Table 
3).  Note that for the standardized measure of fitness used in genetic programming, a lower 
fitness scores represents a fit individual.  Koza (1992) finds that the ramped variable/full 
method works well with many instrumental problems, which he attributes to the early 
diversity created in the genetic program population by this method. 
 

Creation Type  Fitness (mean ln ( Pf )) 
Variable 13.34 
Full 13.19 
Ramped Variable/Full 13.28 
Ramped Variable 13.32 
Ramped Full 13.20 

 
Table 3.  Creation type: mean fitness scores 

 
The difference in effectiveness between varying combinations of full, variable, and 

ramped initial programs can also be seen in the histograms in Figure 3.  The major difference 
between methods is that the apparent center of mass is lower with full programs, in 
accordance with Table 3, which denotes a greater number of more fit programs.  At the same 
time, the full creation technique results in a non-trivial number of poorly performing 
programs. 
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Figure 3.  Creation type: effect on standardized fitness score 

 
In addition to creating larger numbers of very poor programs, full tends to create 

noticeably longer genetic programs (Figure 4).  The figure also illustrates how variable 
programs create a large proportion of relatively short programs, a few medium sized 
programs, and slightly more large programs.  In contrast, full creates few short programs and 
instead results in a gradually increasingly greater proportion of long programs.  The ramped 
variable/full combination attenuates the extreme tendencies of either the full or the variable 
method by ensuring that about a third of the programs are short. 
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Figure 4.  Creation type: effect on program length 

 
The ramped variable/full creation method is used to create genetic programs for agent 

decision making in SYPRIA.  This creation technique balances performance and genetic 
program length.  While there is not a single length that can be said to be realistic in terms of 
decision making, shorter is probably better if genetic programs are meant to act as rules of 
thumb or have reduced length in order to be in accordance with the precepts of bounded 
rationality, since actors should be limited in their computational capacity.  The bimodality in 
lengths that result from the various creation types also suggests a natural break point where 
the genetic program system should be brought to a halt after individual programs reach a 
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given length.  Experiments with creation type suggest this limit is less than 100.  This length 
represents reduced computational resources for decision making because the strategy is 
limited in its complexity, but it also allows an agent some room for deliberation and 
experimentation. 
 
4.3   Selection 
The success of genetic programming lies in having fit parents combine to create fit offspring.  
Over successive generations, the overall fitness of the population increases because parents 
should be more likely to have good fitness while those to be replaced should be more likely 
to have poor fitness.  SYPRIA uses five functions: probabilistic, selection: ranked, 
tournament, elitist tournament, and demetic. 

The first means of selection, probabilistic, is the oldest in terms of the research 
literature and the most widely used.  It was employed by Holland (1975) when developing the 
first genetic algorithm, where probability of being chosen, kP , is: 

∑
=

=
n

j
jjk kfkfP

1

)(/)(  (7) 

Each genetic program is considered in terms of its fitness as a proportion of the total fitness 
summed over the entire population.  Programs are selected according to this proportion.  A 
program accounting for a third of the population fitness, for example, has a 1 in 3 chance of 
being selected as a parent.  The inverse operation is applied to selecting the individual to be 
replaced by the child of another. 

The second form of selection is ranking (Goldberg, 1989).  As the term implies, each 
member of the population is ranked according to its fitness against all other programs and 
then kP  is assigned as a function of this rank.  The genetic programming environment then 
moves down the list, pairing off parents and using their children to replace the poor 
performers at the bottom of the list.  In algorithmic terms, ranked probability kP  is as 
follows: 

( )( )111 −−−+= −+− nipppnPk  (8) 

where −p  is the probability assigned to the worst individual and +p  to the best.  While poor-
performing strategies are not entirely forgotten, choosing them is improbable.  The key 
drawback of ranking selection is that successful genotypes can quickly take over a population 
and impart their distinctiveness on the entire population, leaving less room for innovation. 

The third form of selection is the tournament method, where a small group of 
programs is chosen at random from the entire population.  Each member in this group is 
compared to the others, and the program with the best fitness replaces that with the worst 
fitness.  The number of programs composing a tournament group typically varies from two to 
twenty.  Tournament selection offers a good way of controlling how much evolutionary 
pressure is placed on genetic programs.  Low group size reduces the odds that poorly 
performing programs will by replaced while large groups increase the likelihood of this 
occurring.  The fourth form of selection, elitist tournament, is identical to the ordinary 
tournament technique but the most fit individual in the population is automatically placed in 
the next generation. 

The final form of selection is through demetic grouping, an operation that is 
analogous to the evolutionary pressures found in island geography (Langdon, 1998).  The 
population is divided into a series of subpopulations, or demes, and within each group, 
parents and children to be replaced are chosen at random.  Evolutionary pressure is exerted in 
the form of migratory programs being probabilistically chosen from each deme and sent to 
another deme.  Demetic grouping is useful for halting premature convergence in the 
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population, since each deme can evolve without pressure save for the occasional incursion of 
migratory programs.  As with tournaments, the size of a deme can vary, with smaller demes 
leading to slower convergence. 
 

Selection Type Fitness by year (mean ln (
P

f )) 

Probability 13.68 
Ranked 13.64 
Tournament 13.39 
Elite Tournament 13.41 
Demetic 13.55 

 
Table 4.  Selection type: mean fitness scores  

 
There is little agreement in the research literature on which selection technique is the 

best (Mitchell, 1996; Banzhaf et al., 1998).  The control offered by tournament and demetic 
techniques is tempting but they are more complicated than ranking or probabilistic selection.  
Table 4 demonstrates that tournament methods, both regular and elite tournament, perform 
better than the other three kinds by margins wider than those seen in tests of creation method 
or fitness function.  The demetic method lies in the middle while probability and ranked 
method do the least well.  A one-way analysis of variance on ln (

Pf ) is significant (p = 
0.0000, F = 34.36, df = 596). 

Table 5 illustrates differences between individual techniques and supports the 
conclusion that tournament selection is the most effective.  There are highly significant 
differences between three groups: probability and ranked methods; both tournament methods; 
and demetic grouping.  There is no appreciable difference between probabilistic and ranked 
methods, nor is there a real difference between elite tournament and regular tournament 
methods. 
 

Likelihood of between-class variance by selection type  
(Difference [ ± ] in ln ( Pf ) and p-values [p]) 

Probabilistic Ranked Tournament Elite 
Tournament 

Selection type  

±  p ±  p ±  p ±  p 
Ranked -0.041 1.000       
Tournament -0.295 0.000 -0.253 0.000     
Elite Tournament -0.273 0.000 -0.232 0.000 0.021 1.000   
Demetic -0.137 0.000 -0.096 0.045 0.158 0.000 0.136 0.001 

 
Table 5.  Selection type: between-class variance 

 
The differences between probability and ranking on the one hand and tournament and 

demetic methods on the other, are further illustrated by Figure 5.  Ranked and probability 
methods produce highly leptokurtic fitness curves.  The best-performing programs gain an 
early foothold within the population and quickly dominate other individuals.  As a result, the 
average population fitness over repeated runs is poor because little evolutionary pressure is 
brought to bear on the population as a whole.  In comparison, tournament and demetic 
methods show broader distributions that are, on average, lower scoring and therefore create 
programs of higher fitness. 
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Figure 5.  Selection type: effect on standardized fitness score 

 
Figure 6 highlights another aspect of selection technique.  Given the propensity for 

ranked and probability methods to create genetic programs that quickly dominate population, 
these early leaders tend to be far shorter since they have evolved less over time.  As a result, 
the bulk of the population is dominated by short programs relatively early in terms of 
generations, which leads to relatively short offspring.  In contrast, tournament and demetic 
selection produce less extreme distributions, as individuals are more diverse. 
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Figure 6.  Selection type: effect on program length 

 
The choice of selection method is not necessarily clear, but there are some general 

considerations to bear in mind.  Ranked and probabilistic methods are less appropriate 
candidates for decision-making analogs given that they produce poor distributions in terms of 
length and fitness.  Early solutions are adopted at a higher rate than with other selection 
methods, precluding a good deal of potential strategies.  Not only does this seem to overly 
constrain the nature of possible strategies, these methods limit the amount of exploration 
accorded to the genetic program system in order to pursue exploitation, and therefore do not 
accord well with bounded rationality.   
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This leaves demetic and tournament techniques.  According to the mental 
interpretation, each agent possesses a cadre of competing strategies that represent a set of 
ideas floating around in the mind of the actor.  The actor experiments with these strategies, 
either directly or by imagining how strategies would fare according to what the actor knows 
of its environment.  Tournament selection and elitist tournaments map nicely onto this 
construct since they involve comparison of a small group of programs.  This is in keeping 
with bounded rationality, where actors can only directly consider a few strategies at one time.  
Demetic selection is intriguing but complicates the potentially tenuous relationship between 
actual decision making and genetic programming as a model of decision making.  
Additionally, research on demetic selection is still undergoing and its behavior is not as well 
understood as that of other methods.  For these reasons, SYPRIA typically uses tournament 
selection methods for agent decision making.  

 
4.4   Population 
Under the mental interpretation of using genetic programs to represent decision making, a 
population of programs represents a collection of strategies possessed by a single agent.  
Population has an intuitive effect on fitness scores given that a higher initial population grants 
the population a higher probability of possessing good solutions and greater diversity of 
candidate solutions.  Population sizes of 10 up to 1,000,000 are used in a variety of 
applications, although the recommended size for many problems ranges from 300 to 500 for 
smaller problems (Koza, 1992) and up to 1000 to 10,000 for very complex problems 
(Banzhaf et al., 1998).  As noted by both of these sources, however, there is little general 
research on choosing optimal population size.   

For the problem explored here, there is a linear, positive relationship between genetic 
program population and fitness, keeping in mind that fitness is better with lower fitness 
scores.  A linear regression for fitness, ln ( Pf ), as a function of population size yields an R2 
of 0.488 (coefficient = -.000924, p = 0.0000, t = -23.871, df = 599).  The influence of 
population size on fitness may be even stronger in tests with larger sample sizes since, as 
shown by Figure 7, there are outliers.  The relationship may also be stronger with larger 
population sizes, as 500 is still a modest value for the population parameter.  Nonetheless, the 
figure demonstrates the generally positive relationship between population and fitness found 
in the regression analysis. 
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Figure 7.  Population: effect on fitness score and program length 

 
Figure 7 also illustrates the relationship between population size and length.  There is 

no clear linear relationship between the two, which reflects the bimodality of the ramped 
variable/full technique used for this batch of tests.  There is, however, an apparent 
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relationship between the two in that clustering indicates that smaller populations tend to be 
dominated by shorter programs.  This is in accordance with the general principle that there is 
a greater likelihood of longer programs as population size grows.  Relatively fit programs that 
appear in early generations quickly dominate the population because they face less 
competition from other programs, which in turn are subject to greater overall selection 
pressure.  With larger populations, there is less competitive pressure overall and therefore 
more latitude for larger programs to develop and eventually have higher fitness scores than 
smaller programs. 

Given the weak isomorphism between decision-making theory and genetic 
programming, there is no obvious way to assert that a given population size best represents 
actual human cognition.  Does the average person have 100 strategies or a million?  Does 
each genetic program represent part of a single actual strategy or a strategy in and of itself?  
The SYPRIA system falls back on the general bounded-rationality precept of limited 
computational resources.  A value of 300 is the lowest realistic value for most applications, 
and this value is therefore used by the SYPRIA model.  Higher values would move the agents 
away from representing boundedly rational actors and towards actors with infinite search 
capacity, as under perfect rationality.  
 
4.5   Generations 
The number of generations, in theory, works much in the same way as population size, in that 
a greater number makes it more likely that a better solution is produced by the population of 
genetic programs at the risk of overtraining (Kushchu, 2002).  There is a weak, yet significant 
positive relationship between genetic program generation size and fitness.  Linear regression 
results for fitness on ln ( Pf ) against population size yields an R2 of 0.110 (coefficient = -
.00173, p = 0.0000, t = -8.578, df = 599).  As indicated by Figure 8, the effect of generation 
size is marked for roughly the first 30 generations and then becomes less noticeable 
afterwards, which partially accounts for the weak relationship between generation size and 
fitness. 
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Figure 8.  Generation size: effect on fitness score and program length 

 
Program length generally increases with the number of generations, as illustrated by Figure 8.  
This relationship is more apparent in the case of the genetic program system depicted in 
Figure 9, which depicts length and fitness of the fittest member of the population in every 
generation.  The fitness of this member increases with the number of generations but its 
length also increases rapidly before leveling off. 
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Figure 9.  Generation size: effect on fitness and program length 

 
There are exceptions, however, where evolution will suddenly resume after a long 

period of quiescence in to the thousands of generations.  The amount of computational effort 
required to mount so many generations may make it not worth the time and is not considered 
here since bounded rationality suggests that actors have limited computational resources.  
Figure 9 does not tell the whole story of the relationship between generations and length 
because the length of programs in later generations is pruned according to settings mandating 
the maximum genetic program length and maximum depth at which crossover may occur.  A 
length error occurs when mutation or crossover between two parents creates a genetic 
program that is too long, typically 500 genes.  A crossover error occurs when the depth at 
which the randomly selected crossover point in either of the parents is too deep, typically 17 
branches.  Parents continue to create and discard offspring until one is created that does not 
exceed the maximum program length or maximum crossover depth.  This error-free program 
becomes the single, official offspring of the parents.  The removal of genetic programs 
committing length and crossover errors is the chief reason why the length of the best genetic 
program depicted in Figure 9 levels off and is partially responsible for the diminishing returns 
of generations in terms of fitness.  As Figure 10 illustrates, the number of length errors 
committed by a single genetic program run is linearly related to generation size. 
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Figure 10.  Generation size: effect on length errors and crossover errors 

 
In terms of generation size and SYPRIA, many of the arguments made for a low 

population value hold for generation size, especially the bounded-rationality dictate of limited 
computational resources.  Values of 30 to 50 are the lowest recommended values in general 
and they are adopted by the SYPRIA model.  As above, higher values would make for more 
of an instrumental search on the part of agents.  Another rationale for low generation values 
is that they are less likely to create long genetic programs.  In choosing the tournament 
selection technique over ranking or probabilistic methods, for instance, the one advantage of 
the latter techniques is their propensity to create shorter programs.  Limiting generations, and 
population size, is one way to limit the length of resultant programs and stay in keeping with 
bounded rationality.  This is seen in Figure 8, where there are very few long programs before 
generation 30 and a limited number before generation 50.  Figure 9 also demonstrates this 
somewhat, but is less representative since it only applies to one model run while Figure 8 is 
for hundreds of runs. 
 
5.   Conclusion 
Land change research increasingly employs computational land change models as a means of 
combining theory, method, and data.  Modeling methods are expanding to encompass those 
stemming from computational intelligence, such as genetic programming, cellular modeling, 
and agent-based modeling.  The SYPRIA model demonstrates the use of a computational 
intelligence method, genetic programming, to model boundedly rational decision making in 
the context of human-environment relationships.  In doing so, it addresses theoretical and 
methodological needs in human-environment modeling, particularly with respect to decision 
making.  Importantly, it offers a way to model individual actors and their decision-making in 
a manner that addresses issues of memory, optimization, complexity of strategies, learning, 
innovation, and communication with other agents.  This work has ramifications for 
geocomputation and its cognate fields of human-environment modeling, computational 
intelligence, decision sciences, and complexity research. 
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