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Introduction 
 
In the nineteenth century George Ravenstein empirically described the population distribution and 
migration trends in England (Ravenstein, 1885).  He noted that when looking for work, workers tended to 
move randomly from place to place with preferences for the shortest paths, and he noted the existence of 
migration flows towards centers of industry.  In the early twentieth century, Zipf posited the P1P2/D 
hypothesis  (Zipf, 1946).  The hypothesis states that given cities i and j the migration flow between i and j is 
proportional to the product of the populations and inversely proportional to the distance between the cities.  
This hypothesis leads to the development of a stochastic model to determine the population distribution of a 
geographic region.  This type of model has come to be known as a gravity model (Smith, 1997), and uses 
the migration between two cities as transition probabilities in a Markov process.  This gravity model is 
insufficient because it  takes as parameters the very populations which it is trying to predict.   
 
Modeling 
 
In order to resolve the difficulties present in a standard gravity model we utilize the empirical observations 
made by Ravenstein to construct the transition probabilities associated with a Markov process.  We define a 
matrix T with components  
 

Tij =
1
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and 
Tii= anJi  , 

 
where the an are three fittable parameters, R is the number of major roads from i to j, Dijk is defined to be 
the distance along an existing road between adjacent regions i and j and to be infinite for regions which are 
not immediately adjacent along existing roads, W ijk is the average width along the roads described in Dijk, 
and Ji is a measure of job availability in region i.  So, at each time step individuals move from region to 
region randomly with preferences for shortest paths and remain in a given region with a probability 
proportional to the number of jobs in that region.  In this matrix we define preferences over remaining in 
regions at each time-step; this degree of freedom is omitted from many of the standard gravity-type models  
(Dorigo, 1983).  We then define the normalized Markov matrix M where 
 

Mij = Tij / 
i
∑ Tij . 

 
So the ith column of M represents the complete set of actions an individual at region i may take at the next 
time step and the probability with which the individual will perform each action.  Since M is a normalized 
Markov matrix we can determine the equilibrium probability that an individual will be in region i by 
examining the ith component of the normalized eigenvector associated with eigenvalue 1; this eigenvector 
defines the equilibrium population distribution for the network of regions being modeled (Doyle, 1988).    
 
Goodness-of-Fit and Statistical Significance 
 
Given the discrete nature of a population distribution and the dependence of the model on real data, non-
linear fitting techniques are appropriate to determine the quality of the model and the statistical significance 
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of the results.  We apply a generalized, non-linear chi-square test to determine that goodness-of-fit and 
statistical significance of the model, whose predictions depend on the parameters {an} and the data {Qm}.  
The chi-square statistic is defined as 
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i
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j
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where Ei is the model-predicted population of region i, Pi is the observed population of region i, and s ij is 
the standard deviation of changes in Ei due to errors in the measurements of the elements of {Qm}, namely 
the road lengths and widths, the sizes of the job markets and the observed populations.  The s({Qm: 
Qm?Pi}) were determined numerically by varying these parameters within their respective confidence 
values, then finding the change in Ei for all i, and then taking the standard deviation of these changes  in Ei.  
This test only applies when the changes in each Ei are normally distributed over the runs of the numerical 
simulation.  The s({Pi}) were determined by taking the standard deviation of the change in observed region 
populations over ten years of census data. 

 
 
Empirical Results 
 
We apply the model both to the counties of California (California Department of Finance, 2004) and to the 
major metropolitan areas of England (National Statistics, 2001).  We divide the regions into three classes 
associated with the three fittable parameters. We form these classes from regions of similar geographic 
characteristics and economic status.  Figure 1 shows the actual and predicted populations of California 
while Figure 2 shows the actual and predicted populations of England.  The chi-square statistic described 
above is 32.3 for the cities in England and 13.9 for the counties in California.  Both of these values indicate 
that we cannot reject our hypothesis .  
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Fig.1 Plot of actual California populations in green 
and model predicted populations in blue
 

Fig.2 Plot of actual England populations in green and 
model predicted populations in blue

We can attribute a certain amount of error in the model to violations in the assumptions of the model.  For 
instance, we assume that the major roads in an area represent the entire transportation network so we see 
large amounts of error between regions which have many small roads connecting them.  Los Angeles and 
Orange counties demonstrate this type of deviation from observed data as can be seen in the first two data 
points of Figure 1 (ESRI, 2005).  While a certain amount of error is to be expected we find that this model 
accurately describes both England and California despite large differences in their geographic location, 
economic status, and population dynamics.  Given the differences between these two areas and the 
accuracy of the model, we conclude that our model demonstrates a strong correlation between population 
distribution and transportation networks.     
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