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Abstract 
In this study, presence/absence models of eleven vegetation alliances in a portion 
of the Mojave Desert (California, USA) were developed using generalized linear 
models (GLM) and classification tree (CT) models, and two different methods for 
explicitly incorporating spatial dependence. In the first method, spatial 
dependence was included as a model term, along with environmental variables, 
and predictions were generated. In the second method, the residuals from the 
models using environmental variables were added to the model predictions. 
Accuracy was assessed with relative-operator characteristic (ROC) plots, using a 
portion of the sample data not used for model development. Spatial predictions of 
alliance presence/absence were compared among all twelve of the models.   
In general, incorporating spatial dependence improved the classification accuracy 
of most of the models. Models for more common alliances showed a greater 
increase in accuracy, while models for rare alliances were less consistent. This 
was most likely related to the relative of data on ‘presence’ observations for rare 
alliances. The residual interpolation method had more consistently positive results 
in terms of increased accuracy than the method of including spatial dependence as 
a predictor variable. One problem associated with the latter method is that the 
resulting models may become less generalizable, as they rely too heavily on 
presence data rather than environmental correlates. Additionally, the spatial 
patterning of the dependence variables, particularly the overly smooth kriged 
surface, can result in ecologically unrealistic predictions.  

 
1. Introduction  
Predictive vegetation modeling (PVM) quantifies the relationship between vegetation 
distribution and environmental gradients and applies the resulting model to unsampled areas. 
The result is a map that shows the geographic distribution of some vegetation attribute (e.g., 
probability of presence or mean abundance) as a function of digital maps of the 
environmental variables. There is an increasingly wide variety of statistical methods from 
which to choose, ranging from more traditional generalized regression to artificial neural 
networks and genetic algorithms (for review, see Franklin, 1995; Guisan and Zimmermann 
2000). Method selection is based upon, among other things, data characteristics (known vs. 
unknown parameters, distribution, measurement level), model use (prediction vs. inference), 
and intended final product (categorical map, abundance map).  
These models are typically static and probabilistic in nature , and rely on the assumption that 
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vegetation is in equilibrium with its environment. Many frequently used methods such as 
generalized regression further assume that the distribution of vegetation is random, and 
therefore each observation is independent, an assumption which casual observation proves 
unrealistic. This lack of independence and randomness in natural distributions led Waldo 
Tobler (1970) to coin the phrase ‘first law of geography,’  to describe the regularity that near 
things are more related than distant things (also see Sui 2004). Spatial dependence in 
biogeography, for example, results from the fact that plants that are close together are more 
likely to be influenced by the same generating process and will therefore be similar 
(Legendre and Fortin 1989).  
Failing to account for spatial dependence in biogeographical data can lead to poorly specified 
models in general and inflated significance estimates for explanatory variables in particular 
(Legendre 1993). Some of the spatial structure can be explained by the predictor variables 
used in the model. Environmental variables such as precipitation, temperature and elevation 
exhibit spatial dependence, some of which is responsible for spatial clustering in vegetation 
distribution, while extant spatial dependence can result from either unmeasured 
environmental variables or biotic processes that cause spatial clustering.  
Spatial dependence has been identified as an important area of future research in habitat 
distribution models in general (Franklin 1995; Guisan and Zimmermann 2000). Although 
traditionally ignored, many vegetation modeling studies that do acknowledge spatial 
dependence attempt to eliminate it by manipulating the sampling strategy to avoid 
autocorrelated observations (Legendre and Fortin 1989; Davis and Goetz 1990; Borcard et al. 
1992; Smith 1994). Several studies have indicated the importance of including spatial 
dependence in models as a way of clarifying the influence of environmental predictor 
variables (Wu and Huffer 1997; Hubbell et al. 2001; Keitt et al. 2002). Borcard et al. (1992) 
and Legendre and Legendre (1998) used partial regression to separate the explanatory ability 
(of vegetation distribution) of environment from spatial factors (see also Lobo et al. 2002; 
Lobo et al. 2004; Graae et al. 2004; Nogués-Bravo and Martinez-R ica 2004 for recent 
examples). However, the potential predictive ability of spatial dependence in PVM has only 
recently been explored (see Miller et al. submitted, for review). 
The aim of this study was to compare the predictive accuracy of vegetation models in which 
spatial dependence has been explicitly incorporated. Two types of models are utilized, 
generalized regression models (GLM) and classification trees (CT), and two methods for 
describing spatial dependence are compared. The first method of incorporating spatial 
dependence uses geostatistical techniques to interpolate a surface from sample data to obtain 
an additional variable of neighborhood (3 x 3 grid cells) presence/absence. The second 
method of incorporating spatial dependence considers the spatial dependence in the model 
residuals to most likely represent spatial dependence in the vegetation distribution 
unexplained by the model variables. Residuals from nonspatial GLM and CT models are 
interpolated and adde d to the model results to form new predictions.     
The models are used to predict presence/absence of eleven vegetation alliances, ranging from 
rare to common, in a section of the Mojave Desert, CA. Twelve environmental variables were 
used as predictors in the models. These variables have been used successfully in previous 
studies, or have an ecological basis for being associated with vegetation dist ribution. A total 
of 3819 observations of alliance presence/absence were collected and compiled and divided 
into 75:25 train:test modeling dataset. Classification accuracy is compared for models using 
two different methods of incorporating spatial dependence (model term and model residuals), 
two different statistical methods (GLM and CT), and several different types of vegetation 
distributions (rare to common, generalist to specialist). 
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2. Data 
2.1 Study area 
The study area for this research is a portion of the Mojave Desert Ecoregion within 
California, referred to as the Eastern California Subsection (figure 1). This region is 
characterized by basin and range physiography, much of it at elevations between 600 and 
1200 m, with some mountain ranges exceeding 1600 m. The Mojave Desert climate is 
characterized by low, unevenly distributed precipitation, temperature extremes, windy 
conditions and high light intensity (Schoenherr 1992). It serves as a transition zone between 
the Great Basin Desert to the north and the Sonoran Desert to the south, and contains, in 
addition to both Great Basin and Sonoran vegetation, its own endemic species as well 
(Rowlands et al. 1982). Temperatures throughout all of the Mojave Desert range from a mean 
minimum January temperature of -2.4°C at Beatty, Nevada to a mean July maximum 
temperature of 47°C at Death Valley (Rowlands et al. 1982). Due to its position on the 
leeward side of the Sierra Nevada and Transverse Ranges, the Mojave Desert gets very little 
precipitation, and the amount varies greatly yearly as well as locationally, although most of it 
occurs between October and April. One result of the combination of low precipitation and 
high evaporation rate is the presence of alkaline soils with low moisture retention capabilities. 
The most common land forms in this section of the Mojave Desert are alluvial fans, bajadas 
and alluvial plains (42%), rocky highlands (45%), washes (5%), playas (2.5%) and sand 
sheets and dunes (3.5%) (www.mojave data.gov).  
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Figure 1: Mojave Desert study area. Outlines section is used for predictions in figure 4. 
 
 
2.2 Environmental variables 
The explanatory variables used here included climate, topography, and landform (table 1).  
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The relationship between clima te and vegetation distribution is based largely on the plants’ 
physiological tolerances and has been used historically to map vegetation (see Austin et al. 
1994; Franklin 1995 for review). The climate variables used here consisted of precipitation 
and temperature, both of which are important in the altitudinal and latitudinal ‘zoning’ of 
plants described by Hunt (1966) in Death Valley. Minimum temperature and available water 
have been significant in explaining the distribution of Mojave Desert shrubs (Beatley 1975; 
Parker 1991). These variables were interpolated to a resolution of one square kilometer and 
include mean minimum and maximum monthly temperature for each month, and annual and 
quarterly mean precipitation (see www.mojavedata.gov and methods described in Franklin et 
al. 2001). 

 

Table 1: Environmental variables used in this study. Climate variables are 1-km resolution; 
all others are 30-m resolution. 

Variable name Description Range of values 

Sumprecip Average summer precipitation 11 – 146 mm 

Winprecip  Average winter precipitation 45 – 579 mm 

Jantemp Minimum January temperature -11.3 – 4.8° C 

Jultemp Maximum July temperature 16.6 – 44.4° C 

Elevation From USGS 7.5’ DEM -85 – 3390 m 

Slope Derived from DEM 0 – 78 

Swness Cosine (aspect - 225°) (Franklin et al., 2000)  -1 – 1 

Lpos4 Landscape position; Average difference 
between cell and 4 neighbors (positive in 
valleys, neutral in mid-slope position, 
negative on ridges) (Fels 1994) 

-1732 – 2311 

Solrad Potential solar radiation (Dubayah 1994) 0 –  383 W/m2 

TMI Topographic moisture index; Number of 
cells draining into a cell divided by the 
tangent of slope (Beven and M.Kirkby 1979) 

0 –  22.6 

Landform Geomorphic landform (Dokka 1999)  29 nominal classes 

Landcomp Surface composition (Dokka 1999)  6 aggregated nominal 
classes 

 
 
Topographic variables have been correlated with vegetation distribution at a finer scale t han 
climate variables (Franklin 1995) and those used here include both simple and complex 
(Wilson and Gallant 1998; see Florinsky 1998 for review of relationships between 
topographic variables and landscape characteristics). A United States Geological Survey 
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(USGS) 7.5’ digital elevation model (DEM) was used to provide elevation values (30m 
resolution); from this slope and aspect were derived. Parker (1991) found that slope was an 
important determinant in Sonoran vegetation distribution, while elevation was important in 
explaining the range of several Yucca species in the Mojave Desert (Yeaton et al. 1985). 
Aspect was scaled to an index of ‘southwestness’ using a cosine transform (cos(aspect – 
225)), a modification of an original formula proposed by Beers et al (1966). Higher values 
indicate more xeric exposures, and pole -facing (moist), neutral, and equator-facing (dry) 
slope aspects can be more easily distinguished. 
Simple topographic variables such as elevation, slope and aspect are often empirically 
important, but as they represent indirect gradients related to vegetation distribution (sensu 
Austin and Smith 1989), their predictive power is less than that of complex topographic 
variables (e.g., solar radiation, topographic moisture) that are more directly related to 
vegetation distribution (Franklin et al. 2000). 
Elevation, slope, and aspect were subsequently used to derive three more complex 
topographic variables: landscape position, potential solar radiation, and topographic moisture 
index. Landscape position describes the position of a cell relative to surrounding cells 
(upslope or downslope). Potential solar radiation is related to the water availability of a site 
(I. Moore et. al. 1991) and topographic moisture is related to soil depth, texture and potential 
soil moisture (reviewed in Franklin 1995). Landscape position and slope are also important 
proxy measures of soil texture (Fels 1994), which was a significant factor in Mojave Desert 
(Beatley 1975; McAuliffe 1994) and Sonoran Desert (Parker 1991) vegetation patterns.  
Vegetation in the desert has a particularly close relationship to landform, as it relates to both 
nutrient and moisture availability. Valverde et al. (1996) found that landform was the most 
important of several topography-related variables in determining vegetation distributions. 
They suggest that it measures an indirect gradient along which temperature, exposure and 
geology vary.  Two categorical geology/geomorphology variables were used here (see Dokka 
et al. 1999 for more detail). Landcomp aggregates land surface composition into six classes 
and landform has 29 landform classes. 
Many of the environmental variables used can have values that are correlated (e.g., climate 
and elevation). The problem of multicollinearity can affect coefficient and significance 
estimates in GLMs. The problem is less severe in CTs—when predictor variables have 
similar effects, one is chosen arbitrarily. However, these variables were selected for this study 
based on their ecological significance, and the emphas is was on prediction rather than 
inference. 
 
2.2 Vegetation variables 
The vegetation response variable predicted was at the alliance level of the National 
Vegetation Classification System (NVCS). An alliance is defined as “a physiognomically 
uniform group of plant associations sharing one or more dominant or diagnostic species, 
which as a rule are found in the upper-most stratum of the vegetation” (Grossman et al. 1998, 
p. 23). Eleven vegetation alliances (table 2) were selected for modeling here, with a goal of 
achieving a representative variety of distribution types in the Mojave Desert (e.g., rare, 
common; specific and general environmental relationships).  
A dataset with 3819 observations of presence/absence for all eleven alliances was compiled 
from three different sampling strategies described briefly here (see Miller 2005 for more 
details). About 30% of the dataset was collected in 1998-1999 from a gradient-directed 
sample; 10% of the dataset came from five ‘retrospective’ datasets collected between 1970-
1990; and 60% of the dataset resulted from a modified roadside sample. The primary goal of 
this study was to develop predictive models so, despite inconsistency in the three sampling 
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strategies, and lack of unbiased sampling in the latter two,  all of the data were combined. 
Therefore, limitations in the use of these models for explanation rather than, or in addition to, 
prediction, should be noted. The data were partitioned into 75:25  train:test portions 
following a heuristic suggested by Fielding and Bell (1997) for presence/absence data with 
more than ten predictor variables. 
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Table 2: Vegetation alliances modeled (source: Thomas et al., 2004), and the proportion of 
the full (test and train, n = 3819) dataset in which they are present. Species abbreviations 
comprise the first two letters of genus and specific epithet of indicator species. Number of 
observations of present (P) are given for test and train data (which consisted of 960 and 2859 
observations respectively).  

Label, 

(Proportion) 

Alliance name P 
test 

P 
train 

Habitat 

ATCA  

(0.006) 

Atriplex canascens 
Shrubland Alliance 

7 16 Soil of old beach, lake deposits; dissected alluvial fans, 
rolling hills. Wetland habitats such as washes, playa 
lakebeds and shores. 

ATCO  

(0.028) 

Atriplex confertifolia  
Shrubland Alliance 

34 73 Bajadas, flats, edges of playas, lower slopes, rocky 
hills, valleys, and minor rills and washes. Soils 
variable; Wetland habitats such as  ashes, and playa 
lakebeds. 

CORA 

(0.034) 

Coleogyne 
ramosissima 
Shrubland Alliance 

21 110 Widespread; shallow rocky soils on upper bajadas, 
pediments and hill slopes, above 1000 m. 

EPNE 

(0.006) 

Ephedra nevadensis  
Shrubland Alliance 

5 17 Dry, open slopes; ridges; breaks with southern 
exposures; canyons; floodplains, arroyos; and washes. 
Well-drained soils, with gravel or rock, may be 
alkaline or saline. 

GALL 

(0.011) 

Pleuraphis rigida  
Herbaceous Alliance 

9 34 Flat ridges, lower bajadas, slopes, dune aprons and 
stabilized dunes.  

LATR 

(0.158) 

Larrea tridentata 
Shrubland Alliance 

145 460 Alluvial fans; bajadas; upland slopes; minor 
intermittent wash channels; Soils well drained, also 
desert pavement surface. 

LATR-
AMDU 

(0.427) 

Larrea tridentata - 
Ambrosia dumosa 
Shrubland Alliance 

417 1214 Alluvial fans; bajadas; upland slopes; minor washes 
and rills. Soils well-drained, colluvial, sandy, and/or 
alluvial, often underlain by a caliche hardpan; may be 
calcareous and/or have pavement surface. 

MESP 

(0.007) 

Menodora 
spinescens Dwarf-
shrubland Alliance 

10 17 Ridges, slopes, upper alluvial fans and bajadas. Soils 
bedrock or alluvium derived. 

PIMO 

(0.013) 

Pinus monophylla 
Woodland Alliance 

12 38 Upper elevations; cool, moist mountain areas 

YUBR 

(0.092) 

Yucca brevifolia 
Wooded Shrubland 
Alliance 

87 265 Narrow zone, base of mountains. Gentle alluvial fans; 
ridges, gentle to moderate slopes. Soils colluvial, 
alluvial derived: coarse sand, very fine silt, gravel, or 
sandy loam. Often bimodal soils with both coarse 
sands and fine silts.  

YUSC  

(0.047) 

Yucca s chidigera 
Shrubland Alliance 

49 132 Rocky slopes, upper bajadas, and alluvial fans. Soils 
well drained, derived from various substrates including 
granitic, limestone, volcanic, metamorphic. 
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The data used here were collected under the auspices of the Mojave Vegetation Mapping 
Project (MVMP), the purpose of which was to use PVM to develop accurate vegetation maps 
efficiently. The methods for incorporating spatial dependence explored here were focused 
primarily on increasing prediction accuracy, using the available data and methods that were 
not prohibitively computationally intensive or complex, rather than on generating inferences 
about the nature of spatial dependence observed in this data. It should be mentioned that, 
while accuracy assessment is an important component of PVM research, when the emphasis 
is on prediction, all available data should be used to develop the ultimate models (Fielding 
and Bell, 1997). Accuracy may still be assessed based on the test data, as that would 
represent a more pessimistic and realistic measure of model success, then training and test 
data should be combined for ultimate model development. 
 
3. Methods 
3.1 Statistical models 
Two conceptually different modeling methods were used here: generalized linear models 
(GLMs) and classification tree (CT) models. Both of these methods can be used for 
vegetation mapping because they each can be manipulated to produce a probability surface, 
sometimes referred to as suitability for CT models, of vegetation presence.    
 
3.1.1 Generalized linear models  
GLMs are one of the most commonly used methods to relate vegetation to its environment 
(see Guisan et al. 2002). GLMs extend more traditional linear regression models to allow for 
non-normal error distributions and accommodate many different response variable  
distributions (e.g., Logistic, Poisson: McCullagh and Nelder 1989). Model specification with 
GLMs is fairly subjective, and as a result they are less data -driven and exploratory as 
nonparametric models such as CTs . One limitation associa ted with GLMs is the stepwise 
variable selection procedure often utilized. Although this process can be automated (resulting 
in new problems related to variable inclusion based solely on significance estimate), the 
procedure used here is an iterative and subjective process, requiring expert information on 
variable inclusion and exclusion, as well as appropriate transformations.  
Logistic regression uses a logit link to describe the relationship between the response and the 
linear sum of the predictor variables. was used here , and was used here, as the response data 
were binary. The GLMs were developed based on a combination of stepwise and subjective, 
iterative, variable addition and subtraction methods with a goal of minimizing the AIC 
statistic (Akaike 1973; Hastie et al. 2001). Pairwise interaction terms based on biophysical 
principles (e.g., elevation/aspect) or position in the CT structure (described below) were also 
tested for significance. Generalized additive models were used to identify higher order 
relationships (polynomial, piecewise linear) between the environment gradients and response 
variable (see Brown 1994; Franklin 1998; Miller and Franklin 2002 for similar methods) 
which were then specified as such in the GLM. Once a subset of variables was selected for 
the nonspatial model, the spatial dependence term was added (always as a linear term) and 
any subsequently non-significant variables were removed. 
 
3.1.2 Classification trees 
CT models are rule -based and nonparametric. The rules are developed by partitioning data 
into subsets that are increasingly homogeneous with respect to the response variable 
(Breiman et al. 1984). All splits in the predictor variables are examined and a split is selected 
to maximize homogeneity in the resulting two branches. The splitting continues until either 
the resulting branches are homogeneous or a minimum number of observations remains in the 
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subset. The terminal node is the end of the branch and is defined by the hierarchical rules that 
precede it. Associated with each terminal node is the number of points in the training data 
that were observed in locations that met the environmental criteria, as well as the number that 
are correctly classified. This proportion can be interpreted as the ‘suitability’ (Pontius and 
Schneider 2001) for a class to occur, analogous to the probability that results from GLMs.   
CTs are particularly appropriate when the form of the relationship between response and 
predictor variables is unknown, as they are considered to be ‘data-driven’, and therefore more 
exploratory than parametric methods such as GLMs.  Classification trees produce a set of 
decision rules that identify not only multiple conditions that are associated with alliance 
presence, but also conditions that are associated with its absence. Therefore, CT models may 
describe more adequately common or generalist alliances that are associated with more than 
one set of environmental conditions, especially when “indirect gradients” are used. 
Classification trees are particularly well suited for environmental modeling as they are able to 
express complex relationships among the predictor variables that are nonlinear, non-additive 
and hierarchical. Rather than estimating a mean value for a range of environmental variables 
associated with the vegetation types (as with most parametric techniques), classification trees 
identify specific thresholds of environmental conditions above or below which a species or 
vegetation type can be found, and these can be used to formulate conditional statements from 
which predicted surfaces can be generated.  
Each CT model was given all predictor variables (twelve environmental variables for 
nonspatial models, one additional spatial variable for each of the three spatial models), then 
was pruned (based on cross-validation, see Breiman at al. 1984) to sizes that ranged from 6 to 
31 terminal nodes for the non-spatial CT models, and 3 to 27 nodes for the spatial CT 
models. 
 
3.2 Spatial dependence methods  
3.2.1 Spatial dependence  variable  as a model term 
Two geostatistical interpolation methods (kriging and simulation) were used to calculate 
spatial dependence terms based on the distribution of presence/absence in the training data, 
and these terms were included with other environmental variables in GLM and CT models in 
the methods described below. Both kriging and simulation are based on the spatial structure 
of the sample data, divided into three components: deterministic variation, spatial 
autocorrelation (defined by a variogram), and noise (Burrough and McDonnell 1998). 
Kriging methods result in one set of predicted values that are optimized based on the 
variogram and the spatial configuration of the data, but the result is overly smooth. Rather 
than one optimal prediction, simulation generates a series of equally probable predictions, 
maintaining some of the ‘roughness’ of the data (Burrough and McDonnell 1998).  
Geostatistical models explicitly include spatial dependence, where its importance is such that 
a predicted value is mainly determined by its distance to other values. But additional 
predictor variables are less easily and flexibly included in geostatistical models, and spatial 
dependence is usually not the only factor related to vegetation distribution. A spatial 
dependence term has been explicitly incorpora ted along with environmental variables in 
logistic models, formally called autologistic models, following work by Besag (1972) and 
subsequent modifications by Augustin et al. (1996).  However, including a spatial 
dependence term requires complete information on the distribution of the response variable, 
which is rarely available. Gibbs sampler and Markov chains methods (Augustin et al., 1996; 
1998) and Markov chain Monte Carlo methods (Gumpertz et al. 1997; Wu and Huffer 1997) 
have been used to “fill in the blanks” of the sample data, but these are all very 
computationally intensive. Here we use geostatistical interpolation methods to calculate 
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spatial dependence terms used in the models. 
Indicator kriging is the non-linear form of kriging used with binary response data and its 
product is a surface with the probability that the condition coded ‘1’ will occur (Burrough 
and MacDonnell 1998). When presence/absence data are used, it is the probability of 
presence that is predicted. Similarly, indicator simulation is used with binary sample data 
(Burrough and MacDonnell 1998). The result is a layer with values of ‘1’ and ‘0’ based on 
the variogram and the proportion of 1 and 0 in the sample data.  
An indicator variogram was fit to the training data for each alliance. All variograms were fit 
using the common heuristic “by eye” approach (Gotway and Hartford 1996), and are 
therefore highly subjective. Three of the most commonly used variogram models were tested: 
spherical, exponential, and Gaussian. Only spherical, which describes a clear range and sill, 
and exponential, which describes a more gradual approach to the range (Burrough and 
MacDonnell 1998) were used. For comparison purposes, a variogram was fit to all alliances, 
even when spatial dependence was not apparent (the sill-to-noise ratio was low). Indicator 
kriging of the variograms and sample data was used to calculate a layer of probability values 
for each alliance. Similarly, indicator simulation was used to calculate a layer with values of 
0 and 1 that mirrored the sample data proportions. The resolution of these spatial dependence 
layers (500 m) was chosen to approximate reasonable spatial dependence resolution, given 
the resolution of the training data and environmental variables, without resulting in unduly 
large processing time. 
This resulted in eleven maps (one for each alliance) with values that represented the 
probability that a specific alliance would be present in each 500 m grid cell based on 
indicator kriging (referred to as “K”); eleven maps with values of 1 and 0 indicating whether 
an alliance is predicted to be present or absent based on indicator simulation (“1sim”); and 
eleven layers with values that represented the mean of ten simulations (“Msim”). Generally, 
the mean of 100 simulations should approximate the kriged result (Burrough and MacDonnell 
1998)—the mean of ten simulations could retain some characteristic roughness of the data, 
with the flexibility of having non-binary values.  
To represent the neighborhood around each cell, the values of each of the spatial dependence 
variables for the eight surrounding grid cells for each observation were summed using 
ARC/Info and added to the modeling datasets as the spatial dependence (SD) term (for K, 
Msim, or 1sim):  

Sd term = ∑
=

8

1

)(
i

ipresP  ,                                             (1) 

The kriged/simulated value for each cell (P(pres)i) can range from 0 to 1, therefore the spatial 
dependence term representing the neighborhood sum, K_x/Msim_x, can range from 0, 
indicating no observations of presence nearby, to 8, indicating a cluster of observations of 
presence (Besag 1972; Augustin et al. 1996). Each of these spatial dependence variables was 
added to the GLM and CT models, along with the environmental variables. Once a subset of 
variables was selected for the nonspatial model, the spatial dependence term was added 
(always as a linear term) and any subsequently non-significant variables were removed. 
 
3.2.2 Interpolated residuals  
Model residuals, the difference between actual values and model predictions, can identify 
specific points that are either under- or over-predicted by the model. If a model fits the data 
well, there should be no systematic pattern in the residuals. Model residuals that exhibit 
spatial dependence can indicate a mis-specified model, either an important, and spatially 
dependent predictor variable has not been included correctly (i.e., incorrect model 
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specification) or at all (McMillen, 2003).  Adding the model residuals to predictions can be 
an efficient way to increase model accuracy by applying to local adjustments to predictions 
based on ‘global’ models, when suitable variables are either unmeasurable or costly to obtain. 
Residuals were obtained for the training data for both GLM and CT models. Variograms 
were fit to the residual values and ordinary kriging was used to interpolate surfaces from the 
residuals.  The result was a CT model residual surface and a GLM residual surface for each 
of the eleven alliances. Each of the residual surfaces was added to the model predictions and 
the resulting surfaces were named CT_Kres and GLM_Kres.  
Gaussian conditional simulation assumes that the data used are normally distributed. The 
GLM and CT residuals were normalized to fit variograms, the variograms were used to 
simulate surfaces, and the surfaces were then transformed back from normalized to regular 
values and added to the model predictions. The result was a CT_Simres and GLM_Simres 
surface for each alliance. 
 
3.3 Accuracy assessment 
Classification accuracy was the focus of model assessment in this work, and ROC plots were 
used as the accuracy metric as they have several advantages over similar measures (e.g., 
Kappa). Most importantly they are threshold- and prevalence-independent (Fielding and Bell 
1997; Fielding 1999). A ROC plot is obtained by plotting all sensitivity values (true positive 
fraction) on the y-axis against their equivalent (1 – specificity) (false positive fraction) values 
on the x-axis. Two or more models can be plotted together and their respective true and false 
positive fractions can be visually assessed. The area under the curve (AUC) of the resulting 
plot provides a measure of overall accuracy at all available thresholds. ROC curves are used 
only with binary data, therefore an AUC value greater than 0.5 indicates the model performs 
better than random sorting. AUC values greater than 0.75 are considered potentially useful in 
a species modeling context (Elith and Burgman, 2002; Pearce et al., 2002). Based on plots of 
sensitivity and specificity for a range of probability values, a threshold was selected to 
produce the binary present/absent maps.  
To summarize, a total of twelve model prediction for each of the eleven alliances were 
compared:  
1) a non-spatial CT model based on the environmental variables (referred to as NS);  
2) the same CT model to which the kriged SD term was added (CT_K);  
3) the same CT model to which the mean simulation SD term was added (CT_Msim);  
4) the same CT model to which the simulation SD term was added (CT_1sim);  
5) nonspatial CT model prediction to which kriged residuals were added (CT+Kres);  
6) nonspatial CT model prediction to which simulated residuals were added;  
7) a nonspatial GLM based on the environmental variables (NS);  
8) the same GLM to which the kriged SD term was added (GLM_K);  
9) the same GLM to which the mean simulation SD term was added (GLM_Msim);  )  
10) the same GLM to which the simulation SD term was added (GLM_1sim); 
11) nonspatial GLM prediction to which kriged residuals were added (GLM+Kres); and 
12) nonspatial CT prediction to which simulated residuals were added (GLM+Simres).  
The classification accuracy of the models was compared using ROC plots based on 
predictions on the test data. 
 
4. Results 
4.1 Comparison of modeling success: methods and alliances 
 The AUC for all model predictions are shown in table 3. Figure 2 summarizes the 
AUC values (on test data) for each of the twelve models across all eleven alliances. Model 
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accuracy varied widely, with an AUC range of 0.3-0.4 between the least and most accurate 
model for all alliances. Summaries of model accuracy on test data for each alliance are shown 
in figure 3.  The lowest model accuracies occurred with the rarest alliances, ATCA, GALL, 
and EPNE, although EPNE had very high accuracies with some models (GLM, GLM_1sim, 
and CT_Kres). However, when an alliance is very rare, higher model accuracy as assessed by 
ROC plots can occur based on a very small increase in the probability for one observation of 
presence. ATCA and GALL had low accuracies for all models. YUSC showed a slight 
decrease in accuracy when spatial dependence was incorporated for both GLM and CT 
models, however both of the non-spatial model accuracies were quite high. YUBR had 
consistently high accuracies for all models, indicating that it had specific environmental 
preferences that were described well by the variables used here. The two most common 
alliances (LATR and LATRAMDU) had both GLM and CT models that were improved by 
incorporating spatial dependence. Generalist alliances such as these are more likely to be 
influenced by local factors that were described by incorporating spatial dependence. It should 
be noted that spatial dependence in the data is both a function of the spatial structure of the 
population from which the samples were taken, as well as the ability of the samples to 
characterize spatial dependence.  
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Table 3: AUC from ROC plots for all models assessed with test data. The models shown are 
nonspatial (NS), including kriged SD te rm (K), including mean simulation term (Msim), 
including single simulation term (1sim), kriged residuals added to nonspatial model 
predictions (Kres), and simulated residuals added to model predictions (Simres). All values 
are significant at p< 0.001 unless otherwise noted. * p < 0.05; † p > 0.05. 

 GLM  CT  

Alliance NS K Msim 1sim Kres  Simres  NS K Msim 1sim Kres  Simres  

ATCA 0.670† 
(0.117) 

0.708* 
(0.125) 

0.708* 
(0.124) 

0.711* 
(0.125) 

0.597† 
(0.139) 

0.855  

(0.055) 

0.610† 
(0.125) 

0.638† 
(0.125) 

0.709* 
(0.124) 

0.639† 
(0.125) 

0.627† 
(0.134) 

0.716† 
(0.118) 

ATCO 0.875 
(0.037) 

0.908 
(0.033) 

0.932 
(0.025) 

0.932 
(0.024) 

0.955 
(0.011) 

0.822  

(0.050) 

0.822 
(0.050) 

0.787 
(0.051) 

0.857 
(0.044) 

0.826 
(0.053) 

0.895 
(0.035) 

0.895 
(0.030) 

CORA 0.901 
(0.022) 

0.965 
(0.007) 

0.966 
(0.007) 

0.923 
(0.018) 

0.960 
(0.009) 

0.904  

(0.026) 

0.895 
(0.039) 

0.855 
(0.056) 

0.741 
(0.070) 

0.923 
(0.018) 

0.908 
(0.035) 

0.775 
(0.068) 

EPNE 0.937 
(0.025) 

0.689† 
(0.148) 

0.781* 
(0.136) 

0.952 
(0.019) 

0.697† 
(0.149) 

0.598† 
(0.146) 

0.791* 
(0.136) 

0.598† 
(0.146) 

0.597† 
(0.146) 

0.507† 
(0.128) 

0.949 
(0.028) 

0.807* 
(0.131) 

GALL 0.706* 
(0.074) 

0.583† 
(0.106) 

0.579† 
(0.106) 

0.599† 
(0.098) 

0.674† 
(0.109) 

0.746  

(0.044) 

0.635† 
(0.114) 

0.510† 
(0.095) 

0.534† 
(0.102) 

0.525† 
(0.092) 

0.616† 
(0.112) 

0.509† 
(0.121) 

LATR 0.735 
(0.023) 

0.814 
(0.020) 

0.818 
(0.019) 

0.790 
(0.020) 

0.817 
(0.021) 

0.770  

(0.023) 

0.716 
(0.024) 

0.813 
(0.021) 

0.782 
(0.023) 

0.760 
(0.024) 

0.734 
(0.025) 

0.748 
(0.023) 

LATR 

AMDU 

0.839 
(0.013) 

0.886 
(0.011) 

0.876 
(0.011) 

0.844 
(0.012) 

0.898 
(0.010) 

0.81 7  

(0.014) 

0.825 
(0.013) 

0.869 
(0.012) 

0.862 
(0.012) 

0.833 
(0.013) 

0.884 
(0.011) 

0.827 
(0.013) 

MESP 0.849 
(0.077) 

0.634† 
(0.104) 

0.630† 
(0.105) 

0.794 
(0.086) 

0.623† 
(0.103) 

0.721* 
(0.106) 

0.661† 
(0.134) 

0.595† 
(0.103) 

0.594† 
(0.103) 

0.571† 
(0.099) 

0.712* 
(0.104) 

0.580† 
(0.109) 

PIMO 0.910 
(0.064) 

0.872 
(0.075) 

0.789 
(0.089) 

0.786 
(0.089) 

0.901 
(0.068) 

0.914  

(0.062) 

0.786 
(0.089) 

0.832 
(0.083) 

0.831 
(0.083) 

0.831 
(0.84) 

0.840 
(0.079) 

0.757* 
(0.097) 

YUBR 0.926 
(0.012) 

0.967 
(0.112) 

0.969 
(0.009) 

0.956 
(0.011) 

0.977 
(0.005) 

0.938 

(0.002) 

0.867 
(0.028) 

0.941 
(0.018) 

0.962 
(0.012) 

0.937 
(0.016) 

0.965 
(0.006) 

0.899 
(0.022) 

YUSC 0.903 
(0.014) 

0.876 
(0.032) 

0.896 
(0.026) 

0.902 
(0.014) 

0.909 
(0.022) 

0.828  

(0.038) 

0.917 
(0.014) 

0.769 
(0.044) 

0.783 
(0.043) 

0.814 
(0.035) 

0.881 
(0.032) 

0.849 
(0.030)  
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Figure 2: Summary of AUC on test data for each model 
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Figure 3: Summary of AUC on test data for each alliance
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Figure 4 illustrates the potential advantages of incorporating spatial dependence, using 
predictions of YUBR presence in a section of the study area outlines in figure 1. A threshold 
was selected based on plots of sensitivity, specificity, and total accuracy (see Miller, 2005 for 
details) in order to create the presence/absence maps, with test data plotted on it.   While this 
was not always the case, the nonspatial GLM here resulted in a number of commission errors 
(false positives) shown in the dashed circle. All of the spatial methods corrected this by 
predicting these observations to be absent. Conversely, the non-spatial CT model resulted in a 
number of omission errors (false negatives) that were subsequently corrected by the spatial 
models.   In general, where spatial dependence does improve the model, adding the kriged 
residuals consistently produces among the best results for both GLM and CT models. When 
the nonspatial models had moderate to high accuracy, spatial dependence improves the 
accuracy at least slightly. If the nonspatial models had high accuracy, particularly the GLMs, 
spatial dependence tends to decrease the model accuracy. The environmental variables could 
be capturing most of the important spatial dependence, rendering the explicit spatial 
dependence, as a model term or residuals, redundant. In most cases, when the nonspatial 
model accuracy is low, spatial dependence does not improve it. Some alliances are not 
amenable to modeling in this context, and the spatial dependence used here may not be as 
important in describing their distribution. 
 
5. Discussion 
In general, GLMs produced more accurate models than CTs. This is somewhat different from 
results reported by other PVM studies that compared GLMs and CTs (Franklin, 1998; 
Vayssières et al., 2000; Cairns, 2001). I used GAMs and CTs with the same data to suggest 
variable transformations used in the GLMs, and this may be responsible for the generally 
higher accuracy in the GLMs. Although the GLM accuracy was higher in general, CT models 
had relatively higher accuracy with common alliances than with rare alliances; GLMs had 
somewhat higher accuracies with rare alliances than with common alliances. 
When spatial dependence was incorporated explicitly as a model term, the resulting 
prediction accuracy was consistently improved for more common alliances. The variogram 
used to interpolate the spatial dependence term is only as good as the data to which it is fit. 
More common alliances provide more information on locations of present observations, and 
that generally results in more evidence of positive spatial autocorrelation. In a recent review 
of habitat distribution models that have incorporated spatial dependence, Miller et al., 
(submitted) concluded that limited availability of sample data at appropriate and varying 
spatial resolutions has been an important limiting factor in the ability of models to describe 
spatial dependence well enough to include it. 
However, a more common lliance may have very high nonspatial model accuracy, in which 
case incorporating spatial dependence as a model term reduces the prediction accuracy (e.g., 
YUSC). When incorporated explicitly as a model term, spatial dependence tends to 
overwhelm the effects of the environmental variables, resulting in less robust models.  
Adding interpolated residuals resulted in the highest (or close to the highest) accuracies for 
nine alliances: ATCA, ATCO, CORA, EPNE, GALL, LATR, LATRAMDU, PIMO and 
YUBR. The only two alliances with highest model accuracy that did not involve interpolated 
residuals were MESP and YUSC, both of which had highest accuracy with non-spatial 
models (GLM and CT respectively). Incorporating spatial dependence as a model term 
resulted in model accuracies as high as the residual models with three alliances: CORA, 
EPNE, and LATR. 
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Figure 4: Maps of predicted presence of YUBR in the section shown in figure 1: (A) non-
spatial model; (B) model with kriged SD term  (C) model with mean simulation SD term; (D) 
model with simulation SD term; (E) prediction plus kriged residuals; (F) prediction plus 
simulated residuals. Dashed circles indicate FP errors that are corrected in the spatial GLMs, 
and FN errors that are corrected in the spatial CT models. 
 
 
Although both methods of incorporating spatial dependence had similar effects for some 
alliances, in general I found that incorporating model residuals more consistently increased 
prediction accuracy. This is likely due to a combination of factors. Using model residuals  
allows for important environmental correlations to be maintained, rather than replaced, 
resulting in ultimately more generalizable results (as demonstrated with the test data here). 
Spatial dependence in the model residuals is based on more than just spatial dependence 
among observations, allowing for a more complex result to be included in the models. 
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