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Abstract 
In recent times, the implementation of both self-organizing maps (SOM) and 
geographic information systems (GIS) to facilitate visualization, classification, 
organization, and analysis of the continually growing digital data has gained wide 
recognition. SOM is a very powerful category of unsupervised neural networks with 
competitive and cooperative learning abilities. The SOM algorithm is essential for 
extracting implicit, valuable, and interesting information from vast quantities of data. 
The principal advantages of SOM include but are not limited to the identification of 
clusters of similar sequences, projection and visualization of high dimensional data 
spaces, and the preservation of topological relationships between data vectors. These 
advantages are essentially valuable to geospatial data which often come with multiple 
attributes where the dimensionality, complexity and the amount of data is prohibitively 
large for manual analysis. In this study, we explore the capabilities of both SOM and 
GIS for potential use in spatially-oriented biomedical databases. These capabilities are 
illustrated by a case study of adult asthma patient data using a variety of visualization 
spaces. Extracted features of similar sequences obtained from the experiment are 
presented. 
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1. Introduction 

The wide acceptance of geocomputational tools to analyze and understand spatial data 

has gained prominence among the GIS and visualization community and to some extent in 

biomedical computations. It is therefore vital to explore the potential of geocomputational 

methods, such as self-organizing maps (SOM) for disease surveillance and the mining of large 

spatial biomedical databases.  

The availability of large amounts of locational information of patients is increasing day 

by day because of improvements in advanced information technologies. The way data analyst 

and visualization experts understand spatial data is often determined by the way how that data is 

easily accessed. New areas of computational development are not only exciting but they also 

challenge data analyst and visualization experts to develop, at the same time suggest, more 

sophisticated data exploration tools. The three main purposes of data exploration are to provide a 

basic understanding of a given dataset, to identify frequency distribution of the variables 

involved, and to look for any deviants in the data. Data exploration basically provides insights 

for further analysis of data.  

SOM is an effective way to project vast amounts of data in a high dimensional space to a 

space with low dimensionality. It is a prominent tool in the initial exploratory phase of data 

mining. SOM is a special architecture of neural networks that cluster the high-dimensional data 

vectors according to a similarity measure (Kohenen 1982; Nurnberger and Detyniecki 2002). In 

fact, SOM clusters the data in a manner similar to cluster analysis, but have an additional benefit 

of ordering the clusters and enabling the visualization of large numbers of clusters (Bock 2004). 

These clusters are arranged in a low-dimensional topology, usually a pre-defined two 

dimensional grid structure (Kohenen 1982; Nurnberger and Detyniecki 2002; Jiang and Harrie 

2004). Hence this technique is particularly useful for the analysis of large datasets with high 
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dimensionality where similarity matching plays a very important role (Kohenen 1982; Cuadros-

Vargas et al. 2003). It compresses information while preserving the most important topological 

and metric relationships of the primary data items (Kohenen 1998; Kirk and Zurada 1999). SOM 

is basically used to classify the objects based on their similarities within groups, thereby 

discovering the structure of the data hidden in large datasets (Kohenen 1998; Bock 2004; 

Sugiyama and Kotani 2002). It quantizes the training data into a representative set of prototype 

vectors and then maps the prototype vectors onto a low-dimensional grid. The clusters are 

arranged in a grid structure so that the neighborhood relations in the high dimensional data 

(Costa 1999; Elliman and Pulido 2002; Jiang and Harrie 2004) are preserved in this low 

dimensional space as well. As a result, SOM is especially useful for data exploration because it 

has prominent visualization properties and grid foundation. This grid structure simply provides a 

versatile platform on top of which various data exploration methods can be efficiently 

constructed and compared. It is important to note that the selection of the size of the map and the 

parameters used in estimation are primary concerns in the training of a SOM (Kohenen 1998; 

Bock 2004).  

GIS technology and its science are emerging interdisciplinary fields which inquire about 

the nature of geographic phenomena and of geographic information. The science of GIS 

(GIScience) seeks to formalize geographic principles using logic and mathematics, to explore 

scientific, educational, and policy-related uses of geographic information, and to elucidate the 

complex relationships that individuals and society have with their surrounding environments 

(Mark 2004). It also provides a framework for scientific and engineering studies of physical and 

social phenomena (Mark 2004). According to a scientific report in the Nature Publishing Group 
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released in 2004, the US Department of Labor identified geotechnology as one of three most 

important emerging and evolving fields, along with nanotechnology and biotechnology. 

The integration of SOM with GIS for biomedical applications is noteworthy as noted by 

Openshaw and Openshaw (1997) and Koua and Kraak (2004). Our earlier communication 

(Oyana et al. 2005) reported on this issue, the integration of SOM with GIS. In this report, we 

provide a variety of visualization spaces to illustrate the capabilities of SOM and GIS when used 

together.  

 

2. Study Objectives and Motivating Factors  

The primary objective of this study is to explore and visualize disease data by combining 

the capabilities of both SOM and GIS. Current demand for novel approaches with a wide 

potential to visualize or discover unknown facts and knowledge has motivated this work. It is 

common knowledge that huge data volumes make it extremely difficult to glean any insights 

from pages and pages of reports. It is usually impossible to either spot trends or understand 

patterns quickly enough to make the best use of data at hand. SOM algorithm facilitates data 

reduction method with a primary goal of aggregating and classifying data contained in large 

datasets into manageable information nuggets. Visual integrations within SOM and GIS are 

essential in gaining insights into complex spatial relationships of large data sets that consists of 

many different variables. In fact, visualization can be used effectively to expose associations 

among operating variables in a large volume of multivariate data for purposes of knowledge 

construction. In this study, we examine spatially dependent data, which are collected over 

geographical domains to improve epidemiological and biomedical computations.  
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3. Experimental Design 

The significance of SOM/GIS in exploring data is illustrated using 4910 data points of 

adult patients diagnosed with asthma or gastroenteritis. Case subjects and control subjects 

consisted of asthma patients (International Classification of Diseases, 9th Revision [ICD-9] code 

493) and gastroenteritis patients (ICD-9 code 558), respectively, residing in Buffalo 

neighborhoods during the same period. The study was based on a biomedical database that was 

obtained from Kaleida Health Systems, a major provider of healthcare in western New York. 

Experimental datasets are available at individual and group (aggregate) level—point and polygon 

formats. Vectors consisting of five components (namely, X, Y, case_control/code, IN500, 

IN1000) were visualized using a two-dimensional SOM. Here, X and Y are the coordinates of 

the patients, the case_control/code indicates whether the patient has asthma (case) or 

gastroenteritis (control), the IN500 indicates whether the patient is within 500m of the highway, 

and IN1000 indicates whether the patient is within 1000 m of a pollution source. Using a two 

dimensional grid, we projected the vectors in the input space onto the output space while 

preserving the topological relations observed in the input space. We initially chose 100 map units 

with a map size of 10 x 10, but after several trainings, a 10 x 8 map size was finally selected. 

Component planes of SOM were visualized further by slicing them to show each component. 

The SOM algorithm is applied to analyze the areas affected by the asthma disease and to 

illustrate the structure of the data hidden in huge datasets. The experiments are conducted in 

SOM Toolbox 2.0 for Matlab (SOM Project, Hut, Finland), Matlab 7.0 (The MathWorks, Inc., 

Natick, Massachusetts), and ArcGIS 9.0 (ESRI, Inc., Redlands, California) and SPSS 13 (SPSS 

Inc., Chicago, Illinois). The development environments support substantial topological data 

structures which are capable of handling complex geocomputational processes and the 

integration of separate data sets to produce new spatial information is also possible.  
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Exploration of potential patterns was achieved through the use of various visualization 

spaces. Visual methods used for the experiments include several SOM visualization techniques 

that are based on distance matrices to map the distances between neighboring network units 

(neurons). The U-matrix shows the distances from each neuron’s center to all of its neighbors. In 

the U-matrix a dark coloring between the neurons corresponds to large distance in the input 

space while light coloring between neurons specifies that the vectors are close to each other. 

Hence in the U-matrix a cluster is visualized as a group of units with light coloring surrounded 

by units with dark coloring.  

Several experiments were conducted and training files were constructed using a number 

of samples ranging from 75% of the available data to 1%. We tested a variety of visualization 

techniques using three-to-five component planes to gain maximum insights into our data set.  

For training the SOM, the learning rate goes from 0.5 in the rough tuning phase to 0.05 in 

the fine tuning phase. The initial neighborhood radius is equivalent to half of the map size and is 

gradually reduced during the training phase until it reaches 1. At any instant during the training, 

the minimum value of the neighborhood radius is 1. 

In order to verify the general applicability of the SOM techniques for classifying disease 

features, the results of the training file (SOM prototype data) were imported into ESRI ArcGIS 

9.0 (ESRI, Inc., Redlands, California). Then geographic maps were created and compared with 

the maps obtained with the original features (Oyana and Lwebuga-Mukasa 2004; Oyana et al. 

2004). In these experiments, both maps illustrated similar spatial patterns and distributions of the 

disease thereby resolving the idea that SOM algorithm captures the dataset effectively and also 

represents the original data accurately. 
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The general design approach followed the standard Kohenen’s SOM algorithm (Kohenen 

1998).  Additional details of the SOM algorithm can be found in Openshaw and Blake 1995; 

Vesanto 1999; Naenna et al. 2003; Jiang and Harrie 2004; Bock 2004. An outline of the key 

steps in performing this experiment is provided below.  

• Establishing the ideal map size. At the beginning, we used a grid of 10 rows by 10 

columns for training the test data and after several runs, we settled for 10 rows by 

8 columns in the final clustering experiment. 

• Initializing the weight vector for each of the neurons (vector quantization). We 

initialized them in a linear fashion. 

• Training the SOM using component planes ranging from three-five of them at 

ago. The learning rates and neighborhood radius used are already described in the 

previous Section. 

• Updating the weight vector of the winning neuron or the Best Matching Unit 

(BMU) and that of all the neurons within its proximity (vector projection). 

• Evaluating and post-processing the SOM prototype data in GIS and SPSS 

software. 

 

4. Results 

After the training of SOM, a measure of map quality was generated. The maps have two 

primary quality properties: data representation accuracy and data set topology representation 

accuracy. The former is usually measured using average quantization error between data vectors 

and their BMUs on the map.  The quantization error gives an idea of the quality of the 

representation provided by the SOM. This value is calculated for the whole map or for each one 

of the neurons and each one of the input patterns. For the latter several measures have been 

proposed, for example the topographic error measure—this is when the percentage of data 

vectors for which the first- and second-BMUs are not adjacent units. The SOM algorithm 

generates two types of errors: quantization and topographic. Both measures have been 
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implemented on the adult asthma feature dataset and the quality measures for the trained map 

were found to be q = 400.7 (quantization error) and t = 0.043 (topographic error), and before 

training q = 1.410 X 103 and t = 0. These errors are negligible and it suggests that training was 

adequate and that the topology is well-preserved. Higher value of the errors indicates that the 

training is not adequate in folding the map and the problem structure is complex. 

 
4.1 Visualization of component planes  

We have utilized multiple visualization spaces to explore and visualize a spatially-

oriented biomedical dataset. While several visualization spaces were used during the SOM 

training sessions this paper reports only a few visualization spaces as shown in Figures 1 through 

6.   

Figure 1 shows a folding of a 2-D map into 3-D space to cover the whole dataset. The 

image in the panel represents the distribution of the data in the two dimensional grid with the X-

coordinate values range from 6.6 x 105 to 6.9 x 105 and Y-coordinate values range from 4.748 x 

106 to 4.764 x 106. The map units are linearly initialized. The middle image in the panel 

represents the SOM after initialization while the right panel represents the 3-dimensional map 

after training. 

The visualization of a component plane shows the values of the map elements of SOM 

prototype data for each individual attribute. Together SOM component planes display how each 

input vector varies over the space of the SOM units. Each component plane only shows the 

values of one variable in each map unit based on certain color-coding. This makes it possible to 

visually examine and compare every cell (each cell corresponding to each map unit or data item) 

across all input dimensions.  
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4.1.1 Three Component Planes 
Figure 2 illustrates the visualization of SOM using U-matrix. The upper left image 

represents the U-matrix. The primary clusters in the U-matrix are marked by ellipses. There are 7 

primary clusters and some small clusters are not marked out in this figure. A dark coloring in 

between the neurons corresponds to a large distance and thus represents a gap between the values 

in the input space. A light coloring between the neurons signifies that the vectors are close to 

each other in the input space. Light areas represent clusters and dark areas cluster boundaries. 

The upper right image and the two lower images in Figure 2 illustrate the visualization of three 

component planes. Each of these three components is visualized in the same grid structure. The 

normalized values of the X-coordinates range between 672000 and 687000. For Y-coordinate, 

the normalized values range from 4750000 to 4770000. Similarly for case_control/code, values 

range between 0.0078 and 0.992. The components are visualized using U-matrix and the 

interpretation is similar to that of the U-matrix explained above. In reviewing these SOM 

component planes, an interesting pattern seems to be emerging, of the two major clusters at the 

right corner of U-matrix suggesting that there are two geographic areas in the study region with 

significant concentration of disease cases. Using the identifier tool, we discovered that one of 

them corresponds to Buffalo’s Westside and the Downtown regions and the other represents 

Buffalo’s Southside. This observation is consistent with earlier findings reported in Oyana and 

Lwebuga-Mukasa (2004) and Oyana et al. (2004) thus confirming that the SOM prototype data 

captures spatial structures embedded in the asthma dataset effectively. 

Visualization of this dataset can also be achieved by means of a surface plot of the 

distance matrix. Figure 3 represents a 3D surface plot of adult asthma feature dataset.  The 3D 

surface plot gives a better visual representation (related to three variables X, Y, and 

case_control/code) of the distance between the clusters in the SOM map units than a 2D surface. 



 10 

The distance between map units is represented by both color and z-coordinate and indicate 

average distance to neighboring map units. In this 3-D surface plot, lower values and color 

coding located in the valleys show cluster similarity. The presence of two noticeable valleys 

suggests the existence of adult asthma clusters. Once again, this 3-D display confirms further that 

there exist two major clusters that possibly represent geographic areas with high concentration of 

asthma cases.   

 
4.1.2 Five Component Planes 

Figure 4 illustrates five component planes and cluster analysis examples derived from the 

SOM prototype data. In this round of SOM training, we added two additional attributes, IN500 

and IN1000. The U-matrix suggested 8-to-10 clusters were present in the data while the K-means 

clustering method identified eight clusters with the best Davies-Bouldin validity index. Looking 

at the pattern in Figure 4, it is consistent with earlier observations described in Figures 2 and 3. 

This affirms the statement that SOM is the best suited for extracting the representative features 

and exploring the data to acquire an understanding and generating hypothesis about the 

properties of data. 

Figure 5 is a geographic map of extracted features of SOM prototype data and final 

cluster centers displayed over original features of adult asthma data. There were seven final 

cluster centers. Three of these were major ones and the remaining four were minor ones. Each 

final cluster center represents case patients of asthma and its surrounding neighborhoods. A 

further examination of these clusters reveals that Buffalo’s Westside and the Downtown regions 

had the largest cluster sizes. The second and third largest cluster sizes were observed in Buffalo’s 

Southside and Eastside. These findings are consistent with earlier observations reported in Oyana 
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and Lwebuga-Mukasa (2004) and Oyana et al. (2004) thus confirming further that the SOM 

prototype data captures the asthma dataset effectively.      

 
4.2 Analysis of SOM Prototype Data with SOM Toolbox and SPSS 

We also conducted a comparison of clusters of the prototype SOM data in both SOM 

toolbox and SPSS software using the K-means clustering approach. In both SOM and SPSS, the 

largest clusters were matched perfectly at 100%. For the other two major clusters, SPSS 

classified the cluster class in the east as its second and the one in the south as its third; whereas 

SOM classified the cluster class in the south as its second and other in the south as its third. All 

the remaining minor cluster classes were comparable in both cases. Although the classification 

results in SOM were stronger than the ones in SPSS (this is partly due to the use of best Davies-

Bouldin validity index) both SOM toolbox and SPSS software captured the datasets effectively. 

We then conducted a cluster analysis using a diagnostic tool as illustrated in Figure 6.  

The box plot confirmed cluster 6 as the major cluster. There were some varia tions in clusters 5, 

6, and 7, but all the distances were within reason. The box plot confirmed further that all of the 

clusters representing asthma and its surrounding neighborhoods were within a reasonable 

distance. The diagnosis also revealed that cluster 4 has an outlier and the remaining clusters were 

minor ones.   

 

5. Conclusions and Future Work  

The SOM provides an excellent visualization and exploration platform for analyzing vast 

quantities of spatially-oriented biomedical data. These experiments show that when SOM 

algorithm is combined with GIS methods, there are even more powerful for exploratory analysis 

than when applied separately. Our experimental results suggest that this hybrid approach to 

analyze spatially-oriented biomedical data provides a useful exploration tool to support the 
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formulation of better or new study hypotheses regarding the spatial distribution of a particular 

disease. Overall, this exploratory work was essential for improving our interpretations of the 

findings reported in earlier studies (Oyana and Lwebuga-Mukasa 2004; Oyana et al. 2004). We 

confirmed further based on these experiments that asthma is more prevalent in Buffalo’s 

Westside which is in close proximity to major roadways, Peace Bridge Complex (PBC), and 

pollution sources.   

The quantization and topological errors that indicate the measure of quality of the SOM 

during training were negligible and there were greater improvements in the error component of 

trained maps which suggest the training was adequate and topology was well preserved. 

However, we wish to reduce the error component further by either using principal component 

analysis or incorporating a mathematical improvement model. In our future work, we are going 

to make some mathematical improvements to the SOM algorithm. Currently, the SOM algorithm 

has a number of efficiency and convergence issues that need to be addressed. Some of these 

issues are (1) speed and quality of clustering, (2) the number of output neurons, (3) the updating 

procedure for the output neurons, and (4) the learning rate in the SOM model. 

Other methodological improvements as was suggested in Oyana et al. 2005 have 

significant impacts on how data analysts and visualization experts explore spatially-oriented 

biomedical databases to extract relevant information and gain maximum insights. Improvements 

can enhance the SOM learning process and provide a better understanding of the biomedical and 

epidemiological processes of diseases in relation to space, time, and environment.   
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Figure 1: Folding of 2-dimensional map into 3-dimensional space in order to be able to 
capture the whole data.  
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Figure 2: Upper left image shows the U-matrix with seven major clusters. The upper right 
and the lower images illustrate the v isualization of component planes of the adult asthma 
feature dataset with X-coordinate, Y-coordinate and case_control/ code as variables. Note 
the very smooth and even component planes among these attributes.   
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Figure 3: Exploration of adult asthma feature dataset. The 3D surface plot provides a 
better visual representation of the distance between clusters for this dataset than 2D 
surface . 
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Figure 4: The 10 X 8 SOM in the upper panel illustrates high-dimensional visualization of 
medical data using the U-matrix and K-means clustering methods. The five component 
planes are displayed in the lower panel.  
 
 
 

 

 
Upper panel—the U-matrix 
suggests 8-to-10 clusters when 
applied to the SOM prototype data 
(training result) while K-means 
clustering method identifies eight 
clusters based on the best Davies-
Bouldin validity index. 

The lower panel shows the five 
components used for training. X 
and Y are the coordinates of the 
cases or controls. Code is the 
indicator of the cases (1 for case, 0 
for control). IN500 is the indicator 
showing if the point is within 
500m of a highway. IN1000 is the 
indicator showing if the points are 
within 1000m of a pollution 
source. 
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Figure 5: Extracted features of SOM prototype data and final cluster centers displayed 
over original features of adult asthma data. Each final cluster center represents case 
patients of asthma and its surrounding neighborhoods.  
 

 
 
Figure 6 : Cluster 6 is the major cluster. For clusters 5, 6, and 7, there are  some variations, 
but all of these distances are within reason. Cluster 4 has an outlier and the remaining 
clusters are minor ones as validated both by SOM and SPSS methods.    
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