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Abstract

Geospatid data is often used to predict or recommend movements of robots, people,
or animds (“wakers’). Andyss of such sysems can be combinatorialy explosve.
Each decison that a walker makes generates a new set of possible future decisions,
and the tree of possble futures grows exponentidly. Complete enumeration of
dterndives is out of the question. One gpproach that we have found promising is to
ingtantiate a large population of smple computer agents that explore possible paths
through the landscape. The aggregate behavior of this swarm of agents is a useful
edimator for the likey behavior of the reakworld system. This paper will discuss
techniques that we have found useful in swarming geospatia reasoning, illudtrate their
behavior in specific cases, and discuss the convergence and gpplication of such
systems.

1. Introduction

Geospatid data is often used to predict or recommend movements of robots, people, or animas
(“wakers’). Ecologists may be interested in how changes to the landscape will affect migratory
patterns. Emergency preparedness workers may need to evaluate the flow of evacuees through a
road network. Security personnel may want to track the likely location of sispected terrorists.
Roboticists may want autonomous vehicles to find their way through a landscape populated by
threats and targets. In each case, one or more wakers move in response to stimuli, constrained by
the topology and topography of their environment.

Andysis of such systems faces the challenge of combinatoria explosion. Each decision that awalker
makes generates a new set of possible future decisons, and the tree of possible futures explodes
exponentidly rapidly. Complete enumeration of dternativesis out of the question.

One gpproach that we have found promising is to ingantiate a large population of smple computer
agents that explore possible paths through the landscape. The aggregate behavior of this swarm of
agents is a useful estimetor for the likely behavior of the reatworld sysem. Such a system can
predict the behavior of wakers that move autonomoudy (e.g., for studies of anima migration or the
movement of military troops), or plan movementsthat walkers execute under external contral (e.g.,
for path planning for robots or search teams). Predictive and planning can be combined to deal with
systems in which one population of wakers must anticipate and respond to the movements of

another.



This paper introduces these swarming methods for geospatid reasoning. Section 2 outlines severd
techniques that we have found useful in such systems. Section 3 gives concrete examples of three
such systems, two for planning and one for prediction, and shows how the two could be combined.
Section 4 discusses some practica issues in deploying such systems, including speed of
convergence, support for the computationa environment on which our methods rely in distributed
robotics, and ways to exploit the information generated by these methods in predictive systems.
Section 5 concludes.

2. Modeling Techniques

Swarming geospatial reasoning is a variety of agent-based modding. We characterize agent-based
models in contrast with other computationd models, and then digtinguish swarming models from
other agent- based models.

2.1. Agent-Based vs. Equation-Based Modeling

At some risk of overamplification, computational modds can be divided into two broad classes. In
agent-based modding (ABM), the modd consists of a set of agents that encapsulate the behaviors
of the various individuas that make up the system, and execution consists of emulating these
behaviors. In equation-based modeding (EBM), the modd is a set of equations, and execution
congstsof evaluating them.

Equation-based models, such as sysems of differentia equations, were the only practica form of
mathematical modd in the days before computers. They are quite mature (Sterman, 2000), and can
be executed extremey rapidly using numerica integration. Agent-based models have become
popular only with the advent of inexpensive computers. They offer Sgnificant benefits over equation
based models in respect to the underlying structure d a mode, the naturalness of its representation
of a sysem, and the veriamilitude of a sraightforward representation (Parunak et d., 1998), and
have rapidy grown in popularity in many fidds, incuding geographicad information sysems
(Gimblett, 2002).

2.2. Digtinctives of Swar ming Agent-Based M odeling

The mogt straightforward gpplication of agent-based modeling to a geographica scenario would be
to assign one agent to each entity, modd the agent’s behavior on the entity’ s as closely as possible,
then execute the set of agents and observe their behavior.

In a swarming approach, the agents that explore the landscape differ from red agents (and from a
naive agent representation) in severd ways. Swarming methods are inspired by mechanisms
exhibited by socid animas, notably insects (Parunak, 1997), and these mechanisms often rely on
characteridtics that differ from those associated with real-world people or robots. These differences
incdude the number of wakers, their internal logic, stochesticity, and stigmergic informetion
exchange.

Number of Walkers—In a conventiond multi-agent modd, agents ae in one-to-one
correspondence with physical entities in the red world. Swarming systems achieve sdf-organization
through the repested interactions of many agents, and if the population of red agentsistoo smdl, a
one-to-one correspondence will not yield the required dynamics. Thus each physicd agent may



correspond to many computationa agents. In some cases, we may even indtantiate computationa
agents that do not correspond to any specific physical agent.

Using a many-to- one representation has another benefit in addition to enabling the dynamics of self-
organization. Representing a single entity by a population of agents is analogous to representing a
sngle paticle by a wave function. We are shifting our focus from the unique behaviour of one
individua to a collection of behaviours that sample the space of possible actions. It is sometimes
helpful to interpret their movements as concurrent Monte Carlo. The resulting digribution of
swarming agents can then serve as an estimate of the probability function of rea walker distribution
over the landscape.

Walkers Internal Logic.—The gold standard in conventiond ABM is accurately modding the
interna logic of each rea-world entity. When those entities are humans, each agent becomes an
independent artificid inteligence, most commonly modded in terms of its beliefs, desres, and
intentions (Haddadi and Sundermeyer, 1996; Miller, 1996; Rao and Georgeff, 1991). The
development of the complex symbolic knowledge bases needed to support such “BDI” agentsisan
ingtance of the knowledge acquisition problem, which has long plagued the development of redigtic
Al applications.

The congraints imposed on the agents by the environment (including one another) often outweigh
the effect of different decison agorithms. This phenomenon is andogous to the emergence of

identicd criticd exponents in widdly different physica substances a their criticd pointsin gatistica

physics, and borrowing from the physics vocabulary, we term it “universality” (Parunak et al.,
2004b). Asin physics, so in multi-agent systems we do not fully understand what makes universality
happen (or even how to predict when it will or will not apply). But knowing that it can happen
encourages us to begin modeling with very smple rules rather than with the complete decision logic
of a red-world agent. We focus on smple environmenta clues (“prefer the path with the lowest
gradient”) and tropisms (“head in a generd southerly direction”), and then enhance the agent
sophigtication only as long as it improves the performance of the system. The “brain” of an agent is
not a knowledge base, but a smpler (usualy quantitative) structure such as a neurd network or a
polynomid. These structures can be tuned using synthetic evolution (Parunak, 2005; Sauter et al.,
2002), which is a much more efficient process than the knowledge acquisition required for BDI

agents.

Stochasticity.—Rationd agents are typicdly deterministic, driven by computetions that are
modeled on theorem proving or optimization theory. For example, an agent will typicaly have an
objective function that it seeks to maximize. One consegquence of this approach is that agents with
identica state will make identica decisons, and the system will quickly fall into a stagnant date. To
overcome such symmetries, one must invest in detailed knowledge engineering to capture the
diginctions that dways exist among rea-world agents.

A smpler way to bresk symmetries is to have agents chose stochasticadly from among dternative
behaviors. Typicaly, we use audng a Boltzmann-Gibbs function. For example, a a point in its
evolution, an agent might have n possible choices, each with perceived vaue vi. Instead of making
the choice with the highest vaue, the agent chooses among them, assigning each the probability
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In this equation, T is a temperature parameter that determines the degree of sochedticity in the
decison. When T is smdl, the agent chooses the highest-vaued option dmogt determinigticaly.
When T is large, the choice becomes amost equa among the dternatives. This approach, insared
by smulated annedling (Kirkpatrick et a., 1983), bresks symmetries among the agents without
expensive knowledge engineering and avoids loca minima. We have developed loca measures that
agents can use to estimate the degree of convergence of the system and thus adjust T dynamicaly as
the modd runs (Brueckner and Parunak, 2003).

Stigmer gic Information Exchange—Conventiona agents interact primarily by sending messages
to one another. These messages are typically symbolic, with a grammar based on standards such as
KQML/KIF (Finin, 1997) or FIPA (FIPA, 2000). While the messages necessarily pass through a
communication infrastructure such as the internet, the agents are not aware of this infrastructure, and
behave as though they had direct telepathic capabilities.

Studies of insect behavior have revealed the importance of indirect communication, mediated by a
shared environment. The French entomologist Grasse (Grassé, 1959) coined the term “stigmergy”
from the Greek words stigma “sgn” and ergon “action,” to capture the notion that an agent’s
actions leave Sgns in the environment, signs that it and other agents sense and that determine their
subsequent actions. A common form of stigmergy, and one that we exploit heavily, isthe use by ants
of chemicd markers (pheromones) that they deposit and sense (Brueckner, 2000). Stigmergic
interaction has severd benefits over message-based interaction, including smplicity, scaability,
robustness, and the ability to take advantage of environmental noise to support the need for
sochadticity in decison making (Parunak, 2003; Parunak and Brueckner, 2004).

The use of a didinct environment as the primary medium of interaction avoids computationd
paradoxes that can arise from direct agent-to-agent communication (Michel, 2004). It is one thing
for an agent to intend to change the world, but quite another for the charge to succeed. Classica
agent models often assume unredidticaly that an agent’s actions achieve their intended purpose
(Ferber and Miiller, 1996). The environment provides a computationa locus where the actions of
different agents can be integrated and arbitrated, just as the laws of physics do in the redl world.

3. Experiments

We describe three different systems that use swarming agents to do geospatia reasoning. The firgt
two, planning gpplications intended for robotic units, illusrate how swarming agents can develop
paths that baance the influence of environmenta thrests and targets. The third a predictive
application, illustrates reasoning about more detailed topographica informetion.

3.1. Path Planning with Threatsand Targets

Consder an unmanned air vehicle (UAV) that must find its way around a network of surface to-ar
missiles in order to reach atarget. Figure 1 shows one possible configuration, in which a gauntlet of
threats guards access to the target.



A common mechanism for path planning in this kind of problem is to define a loss function at each
point in space on the basis of proximity to threats and targets, integrate it to generate a potentia

field, and then climb the gradient of the potentid field (Rimon and Kodischek, 1992). In addition to
requiring centralized computation, such methods have difficulty solving configurations such asFigure
1. The fidd can eadly achieve alocd maximum outsde of the gauntlet, trapping the hill-dimbing
search prematurdly. In one experiment, researchers could only solve this configuration with standard
potentia methods by firs manualy defining a waypoint a the entrance to the gauntlet, and then

planning separately the segments of the path from the base to the waypoint and then from the
waypoint to the target.

Figure 1: Path planning with threats and targets
Our architecture for solving this problem uses digita pheromones, and has four components.

A digributed network of place agents mantains the pheromone fidd and performs
aggregation, evgporation, and diffusion. Each place agent is responsible for a region of the
physcd space. In our dmulaion, we tile the physcd space with hexagons, each
represented by a place agent with six neighbors but in principa both regular and irregular
tiling schemes can be employed. Place agents idedly are Stuated physcdly in the
environment using unattended ground sensors distributed over an area and connected to
nearest neighbors through a wirdess network. They may aso be located in a distributed
network of command and control nodes.

Avatar s represent physica entities. Red avatars represent enemy targets and threats, while
blue avatars represent friendly UAV's. Blue avatars are normaly located on the robot. The
name “Avaa” refers to the incarnaion of a Hindu deity, and by extension describes a
temporary manifestation (a software agent) of a persistent entity.

Blue avatars continuoudy emit Ghost agents that wander over the place agents looking for
targets and then continudly building a path from the avatar to the target. The avatars and
ghosts dl deposit pheromones at their current location.

Different classes of agents deposit digtinct pheromone flavors. Agents can sense
pheromones in the place agent in whose sector they reside as well as the neighboring place
agents. (Brueckner, 2000) develops the underlying mathematics of the pheromone field,
induding critica stability theorems.

Battlefield inteligence from sensors and reconnaissance activities causes the ingantiation of Red
avatars representing known targets and threats. These agents deposit pheromones on the places



representing their location in the battlespace. The field they generate is dynamic since targets and
threats can move, new ones can be identified, or old ones can disappear or be destroyed. A blue
avatar representing a UAV is associsted with one place agent at any given time. It follows the
pheromone path created by its ghost agents.

Ghosts initially wander through the network of place agents, attracted to pheromones deposited by
targets and repelled by threat pheromones. Once they find atarget, they return over the network of
place agents to the waker deposting pheromones that contribute to building the shortest, safest
path to the target. The basic pheromone flavors are RTarget (deposited by a Red target avatar,
such as the Red headquarters), RThreat (deposited by a Red threat avatar, such as an air defense
ingdlation), GTarget (deposited by a ghost that has encountered a target and is returning to its blue
avatar, forming the path to the target), and GNest (deposited by aghost that has | eft the blue avatar
and is seeking atarget).

A ghost agent chooses its next sector stochagticaly by spinning a roulette whed with six weighted
segments (one for each of its six neighbors). The size of each segment isafunction of the strength of
the pheromones and is desgned to guide the ghost according to the adgorithm above. We
experimented with severd different forms of the function that generates the segment sizes. Manua

manipulation yieded the current form (for outbound ghosts):

a q>xRT arget, +g>xGT arget, +b
(r >GNeStn +bXD|$n +j )d+a(RThrea1,+1) +b (2)

n

F. is the resultant attractive force exerted by neighbor nand Dist isthe diganceto the target if it is
known. Table 1 ligts the tunable parameters in the equation and the effect that increasing the
parameter has on the ghost's behavior.

Table 1. Tunable Parameters and their Effects on Ghosts

Parameter Effect on Ghost
a Increases threat avoidance farther from the target
q Increases probability of ghosts moving towards aknown

target in the absence of RTarget pheromone
j Increases threat avoidance near target
Increases ghost exploration (by avoiding GhostNest
pheromone)
Increases attraction to RTarget pheromone
Avoids divison by zero

r

q
b

Though this table provides generd guidance to the practitioner, in practice, the emergent dynamics
of the interaction of ghost agents with their environment makes it impossible to predict the behavior
of the ghogts. Thus tuning the parameters of this or any pheromone equation becomes a daunting
task. We use synthetic evolution to adjust these parameters in red time, as the system is operating
(Parunak, 2005; Sauter et d., 2002). Asthe avatar emits new ghodts, it breeds them from the fittest
ghosts that have aready returned. Fitness takes into account three characterigtics of those ghosts:



1. Ghods have a fixed lifeime. Ghods that complete their search faster have longer to breed,
and generate more offspring. Thus we favor ghosts thet found shorter paths.

2. Ghogts encounter threats during their search. We favor ghosts that found safer paths.

3. Tagetsdiffer in vaue. Wefavor ghosts that found more valuable targets.

This system is extremely robust and adaptable (Parunak et a., 20044), and has been deployed on
physical robots (Sauter et a., 2005). It can solve the scenario of Figure 1 (among many others). It
outperforms the classcd potentiad fiedld agorithm due to the large number of ghosts and the
stochagtic element of their movements. Some of them stumble into the gauntlet purely by chance.
Once they find the target, the trail pheromones they deposit raise the probability that other ghosts
will follow them, leading to emergent paths.

3.2. Area Surveillance

A common task for uninhabited robotic vehicles is survellance of a region of territory. Such
surveillance mugt satisfy severd characterigtics. In this example we focus on one: the vehicles should
spread out over the area to avoid double coverage and reduce the time needed to cover the entire
area. A convenient metric for such a system is how rapidly the agentsinitialy cover the territory that
they must monitor, tracking the fraction of the area that has been seen as afunction of time.

A smple dgorithm for this problem (Sauter et a., 2005) uses digita pheromones (Parunak et d.,
2004a; Parunak et a., 2002a; Parunak et al., 2002b). Unlike our other examples, each physica
entity corresponds to only a single agent. The pheromone infrastructure represents the environment
asasquare grid, each cdl of which has a place agent.

1. Once a second, each place agent deposits twenty units of atractive pheromone in its cell,
propagates pheromone to the eight neighboring cells, and evaporates the pheromone by a
fixed proportion.

2. BEvery timeavehicle entersanew cell (on average, once every 4.8 seconds), it deposits two
units of repulsive pheromone and zeros out the atractive pheromone in its current cell.

3. Once every twelve seconds, each place evaporates (but does not propagate) its repulsive
pheromone by afixed proportion.

4. Each vehicle moves to the neighboring cell for which difference (attractive pheromone —
repulsive pheromone) is greatest.

Agents decisions use only the information available in their immediate vicinity, and thus are locd
(though the propagation of attractive pheromone in step 1 provides some spread of information over
time). In the absence of a vehicle, step 1 leads to an aymptoticdly constant level of attractive
pheromone in each cdl, drawing in vehicles. Step 2 causes the vehicles to spread out from one
another, and avoids repeat visits that are close to one another. Because step 1 repeats after step 2,
and because the repulsive pheromone from step 2 evaporates over time, eventualy each ste will be
revisited.

3.3. Topographical Reasoning
Our third gpplication illugtrates the use of swarming geospatia reasoning to predict the movements
of entities that we do not control In this example, insurgents are fleeing southward from friendly



forces through a complex mountainous terrain. The task isto identify where in thisterrain they are
mogt likely to pass, so that surveillance assets can be deployed to detect and intercept them. Unlike
the previous two examples, this example does not use digita pheromones, but relies entirely on
exogenous environmenta variables (direction and gradient).

The sequence in Figure 2 illusrates how swarming mechanisms can address this problem. The
shading of the terrain indicates the stegpness of the terrain. White terrain is level, while the steeper
regions are successvely darker shades of green, and the paich of red near the center bottom is the

Steepest area.

Dark gray - 0 visits
White - 1 visit
Light green - 2-6 visits
Dark green —7-14 visits
Red - 15+ visits

Fgure 2: Predicting Movements in a Complex Topography

The area under Sudy is divided into a square lattice (200 x 200), and the gradient in each cdl is
computed on the basis of the evations in its Moore neighborhood (the eight adjacent cdlls). In
addition, we compute a spatidly smoothed gradient for each cdl based on 5 x 5 Moore
neighborhoods.

We begin with a uniform digtribution of 200 Red agents across the width of the battlespace dong
the northern edge, one per cell. At each time step, an agent assigns a weght to each of the cdlsin
its3 x 3 Moore neighborhood, as the product of three values:

1. theinverse of the cdl’s gradient, normaized to sum to 1 over the neighborhood:;

2. theinverse of the cdl’s smoothed gradient, again normaized to 1;

3. adirectiond weight to encourage southward movement: from NW to W, clockwise, these
weightsare (0, 0, 0, 0.13, 0.23, 0.28, 0.23, 0.13).

The agent’s current cell and the northern cell are omitted, the products renormalized, and then the
agent sdlects from among the five digible directions using the Boltzmann- Gibbs digtribution. In these
experiments, we used atemperature of 0.01.



After only a short time (Figure 2a), the result of the gradient information and the southward pressure
guides the agentsinto clusters. By the time they reach the southern third of the territory (Figure 2d),
al 200 agents have merged into six groups. The find (lower right) plot shows the history of their
digribution, emphasizing how the initid broad distribution rapidly narrows into only a few likely
tracks.

A swarming modd such as this can define areas of interest to focus a survelllance activity. These
swarming Red agents could deposit the attractive pheromones used to route survelllate assets to
the regions through which Red forces are most likely to pass.

A dight modification of this agorithm can be used to modd an intelligent Red adversary thet is
familiar with the terrain. The evolutionary mechanisms used in UAV path planning could also be usd
to evolve individuds that are able to make it from the North to the South in the shortest time with
the least likeihood of being detected by blue. The movement of these evolved red units would be
tracked by pheromones that would indicate the likely paths that a more knowledgesble adversary
might take through this same region. These same pheromone paths can then be used to attract blue
surveillance units, with the stronger, more probable paths attracting greater survellance. Thus a
swarm could be automaticaly perform highly directed surveillance activities againgt a knowledgeable
enemy anywhere in the world without having to explicitly direct the units where to survey and how
often they should monitor the different possble paths or choke points.

4. Discussion
In this section we discuss how rapidly these mechaniams converge, and how the results of such
anadysis can be used.

4.1. Conver gence Speed
A mgor judification of the swarming approach is its potential for overcoming the combinatoria

complexity of classca methods. However, the use of stochagtic decisions raises the question of
how rapidly a swarming system can itsdf converge.

We have developed a generd mode for the convergence speed of swarming systems (Parunak et
a., 2005) based on an etension of te adgptive wak modd (Kauffman and Levin., 1987).
Consider a binary vector ST {0,1} " of length N. Initidly, dl dementsof S are 0. The objective of
this sysem is to maximize N, = SS the number of eementsof Sthat are set to 1.At each time step,
the adaptive walk takes the following actions:

Sdect an dement of Sat random.
If the ement is curently O, set it to 1 with probability py,. If itiscurrently 1, set it to O with
probability p,,. Note that p,, and p,, are independent. In particular, there is no requirement
that they sumto O.

Andysis of the master equation for this systlem shows that

N, = pol(l' eilt)/l (3)



where
L0 (P * Po)/ N @
Though smple, thismodd has the essentid features shared by many more redigtic sysems.

Each element of Sisan agent, and the array corresponds to the entire system of agents.
The system objective isgloba over the entire sygem.

The agents do not have access to this globa measure in making their decisons. In fact, in
this ample modd, they do not corsder the date of any other agent in making their
decisons, but choose probabiligticaly. py, reflects the probability that their loca decison
will advance the globd god, while p,, reflects the likelihood thet their locd decison will
oppose the overall system objectives.

In spite of its smplicity, this modd can be used to andyze the convergence of red sysems To
illustrate, we apply it to the system described in Section 3.2, in a case where 15 vehices ae
responsible for maintaining surveillance of an area 200 cells square. Figure 3 shows three plots of
coverage as a function of time derived from this sysem: an upper bound, the actud observed
performance, and the estimate given by our theory. The time step in al casesis 4.8 seconds (the
averagetimeit takes a vehicle to move from one cdl to another).

100 |7
Upper Experiment
Bound
80 |
Adaptive Walk
()]
2 60 |
o} 40
3 35
o o 30
O\O 40 r ?25
220
Q
Q15
S 10
20 I 5 p
200 400 600 800 1000 1200
Steps
0 L

0 2000 4000 6000 8000 10000
Steps

Fgure 3: Comparison of Adaptive Walk with Pheromone- Guided Area Surveillance

The upper bound is given by the observation that for the fastest possible coverage, & each time
step, each vehicle should move immediately to a cell that has not yet been visted. Such adtrategy is
phydscaly impossible, because it would sometimes require veticles to move directly between
noncontiguous als. But it provides an upper limit, vigting 15 new cells or 15/40000 = 0.0375% on
each time step.



The experimentaly observed convergence is nearly linear until the coverage is dmost saturated, well
over 95%. A linear fit to the region before the elb ow yidds a dope of 0.030.

To derive the plot representing our model, observe that 15 vehicles are sampling cdlls of a 40000-
cell area In terms of the modd, this is comparable to |§ = 40000/15 ~ 2667. For py, = 1, p;, = 0,
wehave| = 3.75E4 (the same as the slope of the upper bound, and N, = 2667(1— @ 375E- 4t) )

In spite of its smplicity, the modd provides an excelent fit to the experimental data up to about
40% coverage. The inset shows how the modd rises dightly faster than the experiment, then begins
to fal below it. We attribute the rapid rise to the assumptions of the modd: while the air vehides are
corstrained by the need to move between contiguous cells, and so must often repeat coverage of
cdls that have dready been seen, the modd can go directly to any cdl. Of more interest is the
shortfall above 40% coverage. The adaptive walk dows as more and more of the area is covered,
50 that the random sdection of the next dte to vist frequently selects a Site that has dready been
vigted.

The continued gtraight-line progress of the experiment shows the effectiveness of the pheromone
mechanism in improving over the random sdection of the next ste to vist. This improvement arises
because pheromones reduce the locality of the decison process, in two ways. First, the propagation
of dtractive pheromone makes information from one cdl avalable in a neighboring cdl, reducing
spatid locdity and gererating a gradient that guides the movement of vehicles. Second, the
persistence of pheromone deposited by one vehicle for sensing by another reduces the tempord
locality of decisons, enabling decisions a one point in time to take into acount the results of
previous decisions.

From an engineering point of view, this example illusraies how the adaptive walk model can
provide a lower bound for estimating the achievable performance of a red system, and for
measuring the effectiveness of mechanisms for overcoming locality.

4.2. Use of Results
The examples we have presented illugtrate two different ways in which swarming geocomputation
can be deployed. In this section we discuss some of the issues involved in deploying these results.

The path planning and surveillance examples show how swarming can drectly control physica
hardware. Avatars controlling physica \ehicles continuoudy manage a population of ghosts whose
interactions emergently yield a solution to the path planning problem. In this case, dthough there are
many more ghodts than vehicles, the output of the system is a sSingle recommended path for each
vehcle.

An important consderation in control gpplications concerns the implementation of the environment
that mantans the digitd pheromones. The pheromone variables need to be mantained on
processors that can update them (to provide evaporation and propagation), while remaining
accessibleto the agents. There are at least three workable aternatives.

1. A dngle centra computer can maintain the pheromone infrastructure. While this gpproach
limits the didribution and scding of the system, it is the Smplest. Because pheromone



computations are so smple, in practice we can handle a system of 24,000 ghost agents on
agrid of 40,000 cdls on a single off-the-shef lgptop computer in red time.

2. At the opposite extreme, each region of space can be assigned its own processor. The
most eegant approach is to embed the processors in the space, as unattended ground
sensors that have ontboard storage, processng, and communications. Only nearest
neighbors need to communicate with one another, SO power requirements can be limited.

3. Each avatar can maintain a pheromone map for regionsiit has recently visited, and exchange
maps with other avatars when it comes near them. Agents move continuoudy through
space, so the areas of most interest arethose close to an agent’s current location, which is
the region for which an agent-based pheromone map will be most accurate.

The topographica reasoning example shows how swarming can predict behavior by generating a
probability digribution over possible futures The frequency with which the agents vist different
regions of the landscape is proportiona to the probability that a single agent would traverse that
region. Such an interpretation is useful in guiding the search for walkers of interest, or in planning
traffic networks, among other applications.

We have described the utility of evolutionary methods in tuning control applications of swarming
geospatia reasoning. Synthetic evolution is dso useful in predictive applications. We are currently
applying swarming geospatid prediction to the movement of soldiers in urban combat (Parunak,
2005). We begin the svarming smulation in the past, and adjust the individua parameters of each
ghost to fit the observed recent behavior of the corresponding red-world entity. Then we alow the
fittest ghodts to run into the future to form our prediction. This mechanism dlows us to base our
predictions on a much richer mode of the individua agent’s behavior than would otherwise be
possible, without the need for time-consuming krowledge acquisition.

5. Conclusion

Swarming methods are a fruitful resource for reasoning about the movements of entities constrained
by topologica or topographica features of the environment. By making disciplined use of enlarged
populations of agents with greatly smplified internd logic, gppropriete application of stochadtic
decisions, and stigmergic information exchange, we can solve problems that would be intractable by
classica enumerative techniques and prohibitively expensive to implement with more sophisticated
agent-based smulation. These methods converge with reasonable speed, and can support both
robotic control and prediction of natural systems.
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