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1. Introduction 
Detecting land-cover changes using a post-classification change analysis simply amounts to 
overlaying classified maps from two different dates and creating either a Boolean map of change 
and no change areas, or a more detailed map that identifies each possible land-cover transition.  
However, each land-cover map has its own patterns of misclassification.  The challenge lies in 
determining how to quantify the manner in which the error estimates from each individual 
classification combine to form the error associated with change detection.  This requires an 
understanding of the uncertainties associated with the individual land-cover-classified maps and 
an understanding of how these uncertainties interact over time.  Thus, an important first step in 
assessing the accuracy associated with land-cover-change is to address the impact temporal 
dependencies have in creating the final error patterns present in a resulting post-classification 
change map. 
 
It is often assumed that the accuracy of a change map equals the product of the accuracies of the 
individual land cover maps (Congalton & Green, 1999), or that one can assume temporal 
independence in order to model the propagation of error across a series of thematic maps 
(Pontius & Lippitt, 2004).  Further, it is often argued that the existence of a temporal dependence 
between the errors of individual land-cover-classified maps  can be safely ignored in most land-
cover-change analyses.  For example, in developing their combined locational/classification error 
model, Carmel & Dean (2004) argue that although the existence of temporal dependence 
between the errors of classified imagery can influence the uncertainty associated with their 
calculated measure of overall error, such dependencies are often minor and negligible in most 
land-cover-change studies.  In contrast, recent research has found that significant differences 
exist between the overall change accuracy of a series of classified maps and that calculated by 
simply multiplying the individual accuracies of the classified maps (Liu & Zhou, 2004; Powers, 
2004).  This difference is primarily due to temporal interactions occurring between the individual 
maps.  Further, recent research has also illustrated that significant temporal interactions occur 
between errors in time-series classified land-cover maps (Carmel, 2004; Powers, 2004).  
Therefore, in order to fully understand the accuracy of a change map, a greater understanding of 
how classification errors from different temporal maps interact and affect our ability to detect 
change is required.  Only by comprehending how errors propagate through a change analysis 
over time will researchers be able to quantify and present a more thorough description of 
uncertainty in land cover change products. 
 



The presented research describes the impact temporal dependencies have on the error patterns 
associated with change maps produced when conducting post-classification change-detection.  
To achieve this goal, a simulation model is developed that allows one to control both the pattern 
and magnitude of the classification errors associated with individual land-cover maps and level 
of temporal dependence between these error patterns to determine the impact increasing levels of 
temporal dependence have on the resulting error pattern of the land-cover-change map.  
Stochastic simulation is used to create both the time-series pair of land-cover maps exhibiting 
varying patterns of change and the time-series pair of associated land-cover maps perturbed by 
varying patterns of error.  These maps are then analyzed in a post-classification change analysis 
to assess the relative performance of the error-perturbed maps in identifying and quantifying 
known land-cover changes.  A variety of change patterns and a series of error patterns exhibiting 
increasing levels of temporal correlation are investigated and compared. 
 
2. A Simulation Model of Land-Cover Change 
Simulation was chosen to investigate the impact of temporal dependencies in post-classification 
change-detection because it allows for the definition of the spatial error patterns of the individual 
land-cover classifications, as well as the degree of temporal dependence between the error 
patterns.  This complete understanding of the error patterns associated with classified land-cover 
maps is often not available when utilizing real-world data.  Further, the use of simulation 
provides a controlled platform for experimentation allowing one to readily assess and compare 
the affect varying error or change patterns have on the resulting accuracy of the change map.  
There are many examples of research studies that investigated error propagation in remotely-
sensed databases through the use of simulated datasets due to the ability to define and control the 
various error inputs and structures (Carmel & Dean, 2004; Arbia et al, 1998; Goodchild et al, 
1992).  Additionally, simulation also enables the generation of multiple representations of the 
uncertainty associated with each of the resulting error-perturbed land-cover-change maps.  This  
permitted a more thorough analysis and comparison of the impact various patterns of error and 
levels of temporal dependence had on the relative performance of resulting post-classification 
change map. 
 
Simulated annealing was used to produce both the time-series pair of classified land-cover maps 
and the time-series pair of associated error-perturbed land-cover maps.  Although simulated 
annealing has seen limited use in research involving remotely-sensed data (Bárdossy & 
Samaniego, 2002; Goovaerts & Journel, 1996), it offers a great deal of flexibility in producing 
multiple realizations for both time-series pairs of maps.  All main model components that 
comprise the land-cover simulation model were produced, in part, using simulated annealing.  
Generally, simulated annealing is a flexible simulation algorithm that requires no definition of an 
initial random function model (Goovaerts, 1997), but instead attempts to reproduce user-defined 
target statistics by modifying an initial image.  Its flexibility is a direct result of the ability to 
define the objective function that the algorithm uses to determine which perturbations are 
acceptable.  Objective function parameters of primary interest in this research included: 1) 
semivariogram models that represent the spatial continuity of the individual land-cover classes in 
each classified map and the spatial continuity of their associated error patterns, and 2) linear 
correlations between the error patterns of individual classified maps to impart temporal 
dependence.  Since many possible solutions to the optimization algorithm exist, a series of 



realizations are produced that allow one to quantify the uncertainty inherent in performing post-
classification land-cover change. 
 
2.1 Overall Model Framework  
The overall land-cover change model was comprised of three main components produced 
through simulated annealing: 1) initial time-1 land-cover classification probability surfaces, 2) 
change probability surfaces, and 3) time-1 and time-2 associated error probability surfaces.   
 

 
Figure 1. Diagram of the overall land-cover change simulation model used to investigate the 

impact of temporal dependencies on post-classification change maps. 
 
Specifically, the flow of the overall land-cover change model can be broken down into two major 
components: generation of a true change map and generation of a series of error-perturbed 
change maps (Figure 1).  The generation of the true change map involved: 

a. generation of the time-1 classification probability surface, 
b. generation of the change probability surface, 
c. addition of the time-1 classification probability surface and change probability 
surface to produce the time-2 classification probability surface, 
d. assignment of land-cover classes to both the time-1 and time-2 classification 
probability surfaces, and 
e. generation of the true map of land-cover change. 
 

While the generation of the series of error-perturbed change maps involved: 
a. generation of a separate series of error probability surfaces for both time-1 and 
time-2, 
b. addition of the time-1 and time-2 classification probability surfaces to its 
associated series of error probability surfaces to produce the time-1 and time-2 
error-perturbed classification probability surfaces, 
c. assignment of land-cover classes to both the time-1 and time-2 series of error-
perturbed classification probability surfaces, and 
d. generation of the series of error-perturbed maps of change. 
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Finally, the series of error -perturbed change maps were compared to the true map of land-cover 
change to evaluate the relative performance of each error/change pattern combination in 
accurately capturing the observed true changes.  Accuracy measures, such as the overall percent 
correctly classified (PCC) and user’s accuracy of the combined change classes, were then 
calculated and compared for each combination. 
 
All land-cover classifications performed in this research were constrained to only two possible 
land-cover classes, with classification probability cut-offs corresponding to the mean, or 50th 
percentile, of the initial probability distribution used to generate the probability surfaces.  For all 
three probability surfaces generated (time-1 classification, change, and error), normal 
distributions were used to produce the initial random maps created during the first step of  
simulated annealing.  Therefore, for land-cover classifications resulting from the addition of 
multiple independent probability surfaces (e.g. time-1 + change), the classification cut-off was 
determined using the theorem governing linear combinations of independent normally distributed 
random variables that states if X1, X2, …, Xn are mutually independent normal variables with 
means µ1, µ2, …, µn and variances s 1, s 2, …, s n then the linear function: 
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where a1, a2, ..., an are real constants (Hogg & Tanis, 1993).  Simulated annealing was conducted 
using the software package GSLib program SASim, while all raster-based modeling, including 
the addition, classification, and cross-tabulation of the individual probability surfaces, was 
conducted using the Idrisi software package. 
 
2.2 Model Parameters  
Parameters relating to the three main components of the simulated land-cover-change model that 
required specification were: 1. spatial pattern of the initial time-1 classification probability 
surface, 2. spatial patterns and magnitudes of the various change probability surfaces, which 
resulted in the time-2 classification probability surfaces, and 3. spatial patterns and magnitudes 
of the various error probability surfaces, which resulted in the associated time-1 and time-2 
error-perturbed classification probability surfaces.  The spatial pattern was controlled by the 
specification of a variogram model used as the primary objective function in simulated 
annealing, and the magnitude of the change and error surfaces was controlled by the standard 
deviation of the initial normal distribution. 
 
First, to produce a classification probability surface for time-1 that exhibited a level of spatial 
continuity that is observable in real-world data, indicator semivariograms were fit to a 
forest/non-forest classification for the quarter-townships comprising Washtenaw County, 
Michigan.  The result of variogram modeling was a distribution of semi-variogram range values, 
which summarized the spatial autocorrelation present in the forest/non-forest classification.  
Based on this distribution, a range value corresponding to the first quartile was selected and used 
in simulated annealing to produce a time-1 classification probability surface with a relatively low 

(1) 

(2) 



level of spatial autocorrelation.  An initial distribution of pixel values was created from N(50, 
144), so that the majority of classification probability values fell within one standard deviation of 
the classification probability cut -off.  In other words, the classification probability surface for 
time-1 was centered at the classification probability cut-off, and the standard deviation was 
chosen such that almost all values fell between 0 and 100.  (Note: values below 0 or above 100 
were set to 0 and 100, respectively.)  The size of the resulting simulated surface was chosen to 
approximate the average size of quarter-townships observed in Washtenaw County, Michigan. 
 
Three different change patterns were generated to produce time-2 classification probability 
surfaces: 1. random, spatially auto-correlated change, 2. expansion of a single land-cover class 
resulting from a trend in the X direction, and 3. change that was both spatially auto-correlated 
and correlated to the time-1 classification boundaries.  Random, but spatially auto-correlated, 
change probability surfaces were produced to reflect the spatial continuity of change observed in 
the previously-used Washtenaw County quarter-townships.  Indicator variogram models were fit 
to binary change maps created from forest/non-forest classifications for each quarter-township 
and a distribution of semi-variogram range values for change was determined.  Again, a single 
range was selected based on this distribution to summarize the spatial autocorrelation observed 
in the binary change maps.  The value selected corresponded to the third quartile of the semi-
variogram range distribution to reflect a relatively high degree of spatial continuity in change.  
Additionally, to produce time-2 classification probability surfaces that captured the variety of 
percent change observed within each quarter-township, the distribution of percent change 
observed between the time-1 and time-2 forest/non-forest classification was determined.  The 
magnitude of the change probability surface was altered by varying the standard deviation of the 
initial distribution perturbed during simulated annealing.  Two standard deviations were chosen, 
which resulted in change percentages roughly equal to the first and third quartiles of the percent 
change distribution, to reflect both low and high percentages of total change area.  Simulated 
annealing was performed twice using the same variogram model, but two different initial normal 
distributions, to generate random, spatially auto-correlated change probability surfaces that 
exhibited relatively low and high magnitudes of change.  Both normal distributions had means 
centered at 0 to ensure that both change types occurred in roughly equal proportions. 
 
Conversely, the expansion of a single land-cover class by the addition of a trend in the X 
direction was produced without the use of simulated annealing.  An initial scaled X trend, 
ranging from 0 to 1 in the west to east direction, was created.  Then, based on the 
aforementioned percent change distribution, a series of trend multipliers were applied in order to 
produce change probability surfaces that corresponded to the percent change observed at the first 
and third quartiles.  Two trend surfaces were produced that reflected both low and high 
percentages of change. 
 
Finally, change probability surfaces correlated to time-1 classification boundaries were produced 
by utilizing the ability to incorporate secondary data in simulated annealing.  First, a distance-to-
classification-boundaries map was created by subtracting the mean of the initial normal 
distribution used to generate the time-1 classification probability surface from each pixel and 
then taking the absolute value.  This created a secondary variable that captured the relative 
distance between an individual pixel and the nearest classification boundary.  Next, simulated 
annealing was performed using a relatively low and high correlation value between the initial 



probability distribution and the secondary data (r = -0.3 & r = -0.7, respectively) , where the 
initial probability distribution equaled the absolute value of the normal distribution used to 
produce a low magnitude of change for the random change probability surface.  The absolute 
value of this distribution and a negative correlation was chosen to both center high magnitudes of 
change probability near classification boundaries and to avoid centering a particular type of 
change near classification boundaries.  Additionally, the same variogram model used to produce 
the random, spatially auto-correlated, change surfaces described above was also applied to the 
generation of correlated change surfaces.  In summary, simulated annealing was performed twice 
using the normal distribution originally used to create maps exhibiting a low percentage of 
change as the primary variable and the distance-to-boundary map as the secondary variable.  The 
results of simulated annealing were two maps each exhibiting high change probabilities near the 
boundaries between land-cover classes, but displaying either a relatively low or high degree of 
correlation to the boundaries themselves.  The final step in creating the correlated change maps 
was to add change directionality back into the final change probability surface.  To accomplish 
this, a binary grid comprised of 1 and -1 randomly assigned to each pixel was produced and 
multiplied to each simulated annealing output map.  Thus, two change probability surfaces were 
produced, with change similar in magnitude to the low percentage change case, but with change 
concentrated near the classification probability boundaries at relatively low and high levels. 
 
The final step in developing the land-cover-change simulation model involved the generation of 
a series of error patterns to produce both the time-1 and time-2 error-perturbed classification 
probability surfaces.  Three different error patterns were investigated: 1. random, spatially auto-
correlated error both at time-1 and time-2, 2. random, spatially auto-correlated error at time-1 
with time-2 errors temporally correlated to the time-1 error pattern, and 3. errors at time-1 that 
were both spatially auto-correlated and correlated to time-1 classification boundaries with time-2 
errors temporally correlated to the time-1 error pattern.  Unlike the change probability surfaces, 
the variogram model used to generate error probability surfaces was not based on real-world 
data.  This stems from the fact that comprehensive error information is often not known or 
available over an entire region of interest.  Instead, a range value for the variogram model was 
chosen so that the error probability surfaces had a smaller degree of spatial autocorrelation than 
the change probability surfaces.  The primary parameter of interest in simulating error 
probability surfaces was the standard deviation of the initial distribution, which controlled the 
overall percentage of errors in the resulting classified error-perturbed land-cover maps.  A 
standard deviation was selected so that the misclassification rate for the error-perturbed maps 
was approximately 25%; i.e. a 75% overall accuracy for the land-cover map. 
 
Random, spatially auto-correlated error probability surfaces for the time-1 and time-2 maps were 
generated similar to the random change probability surfaces, but a different variogram model and 
initial normal distribution was used in simulated annealing.  Again, the normal distribution was 
centered at 0 to ensure that error occurring in both directions  was present in roughly equal 
proportions.  Additionally, the generation of the time-1 error probability surfaces correlated to 
time-1 classification boundaries also followed the same procedure as the generation of the 
correlated change surface, where the degree of correlation corresponded to the relatively low 
level (r = -0.3) used in change.   The initial normal distribution and variogram model used to 
produce the correlated error surfaces corresponded to same parameters used earlier to generate 
the random error probability surfaces.  The only new step necessary to generate error surfaces 



was the creation of temporally correlated time-2 error probability surfaces.  In all cases where 
time-2 error probability were correlated to the time-1 patterns , the resulting time-1 error 
probability surfaces produced through simulated annealing were used as secondary data in time-2 
error surface generation.  The degree of correlation to the time-1 error surfaces was defined as 
either 0.2 or 0.4 to reflect the range of temporal correlation values often seen in practice (Carmel, 
2004).  Again, the same variogram model and initial normal distribution used in the generation 
of the time-1 error probability surfaces was used in the generation of the time-2 temporally-
correlated error probability surfaces. 
 
2.3 An Example Model Run 
The end result of a single run of the simulated land-cover-change model is the production of a 
single true change map that is compared to a series of error -perturbed change maps.  For this 
research, 30 different error -perturbed probability surfaces were generated for each time-1 and 
time-2 map, which resulted in 30 error-perturbed change maps.  Thirty was chosen so that the 
distribution of statistics calculated for each error-perturbed change map (i.e. PCC values) would 
be approximately normal, allowing for more thorough comparisons between the different 
change/error combinations. 

 
Figure 2. Diagram of an example model run illustrating the overall modeling procedure and 

model results. 
 
In all, 30 different change/error combinations were modeled in this research, corresponding to 
the 6 possible change probability surfaces and 5 possible error probability surfaces. 
 
 
 

Error Probability 
Surfaces for 

Time 1 & Time 2 

Time 2 Classification 
Probability Surface 

Time 1 Classification 
Probability Surface 

Time 2 Error-
Perturbed Probability 

Surfaces 

Change 
Probability 
Surface 

Time 1 Error-
Perturbed 

Probability Surfaces 

True Change 
Map 

Error-
Perturbed 
Change 
Maps 

Time 1 Error-
Perturbed 

Classified Maps 

Time 2 Error-
Perturbed 

Classified Maps Time 2 
Classified Maps 

Time 1 
Classified Maps 



3. Results 
For each error -perturbed change map generated for a specific change/error combination, the 
overall percent correctly classified (PCC) and the user’s accuracy of the two possible change 
categories was calculated based on the corresponding true change map.   Both measures were 
calculated using the entire grid area.  The overall PCC statistic is well known in remote-sensing 
research and provides a good benchmark for evaluating the impact of temporal dependencies on 
the accuracy of change-detection.  User’s accuracy for correctly predicting either change type in 
the error-perturbed change map was calculated because the primary interest of this research was 
to evaluate how well post-classification change-detection performs in predicting land-cover 
change in the presence of error.  Separating the model’s ability to predict change from its ability 
to predict persistence provides a better assessment of the change accuracy of the error-perturbed 
change map then the overall PCC value.  Due to the dominance of persistence and the ease in 
predicting stationarity in land-cover class over time, the overall PCC value tends to be inflated in 
accuracy (Pontius et al, 2004).  [Note: In this research, change was confined to approximately 
13%-22% of the grid area depending on the low or high percentage change case.]  Therefore, the 
user’s accuracy for the combined change classes was included to assess the reliability of the 
land-cover transitions predicted by the error -perturbed change maps. 
 
The resulting 30 values for both PCC and user’s accuracy in predicting change were summarized 
by calculating the mean and standard deviation of the distribution of values.  Table 1 displays the 
mean PCC values for the 30 possible change/error combinations, while Table 2 displays the 
mean user’s change accuracy for the 30 possible change/error combinations. 
 
Table 1.  Mean overall percent correctly classified values with associated standard deviations for 
each change and error pattern combination when comparing each error-perturbed change map to 

its corresponding true change map for simulation modeling using 2 land-cover classes and a 
classification cut-off corresponding to the 50th percentile. 

 

 
 

Error Patterns
Low Correlation to Low Correlation to

Random T1 Random T1 Class Boundaries T1 Class Boundaries T1
Random at & Temporal & Temporal & Temporal & Temporal 

T1 & T2 Correlation = 0.2 T2 Correlation = 0.4 T2 Correlation = 0.2 T2 Correlation = 0.4 T2
Random with low 58.889 59.283 61.127 59.651 60.866

% of change 0.004 0.004 0.005 0.003 0.005

Random with high 59.949 60.629 61.247 60.318 61.042
% of change 0.004 0.004 0.006 0.003 0.003

Change X trend with low 58.485 60.007 60.435 59.033 60.23
Patterns % of change 0.004 0.004 0.005 0.003 0.004

X trend with high 59.223 59.777 60.615 59.502 60.408
% of change 0.004 0.004 0.005 0.003 0.003

Low Correlation to 59.208 60.039 61.247 59.72 60.788
Class Boundaries 0.004 0.005 0.006 0.003 0.004

High Correlation to 59.613 60.358 61.442 59.924 60.851
Class Boundaries 0.004 0.005 0.005 0.003 0.004



Table 2.  Mean user’s change accuracy with associated standard deviations for each change and 
error pattern combination when comparing each error-perturbed change map to its corresponding 
true change map for simulation modeling using 2 land-cover classes and a classification cut -off 

corresponding to the 50th percentile. 
 

Error Patterns
Low Correlation to Low Correlation to

Random T1 Random T1 Class Boundaries T1 Class Boundaries T1
Random at & Temporal & Temporal & Temporal & Temporal

T1 & T2 Correlation = 0.2 T2 Correlation = 0.4 T2 Correlation = 0.2 T2 Correlation = 0.4 T2
Random with low 18.819 18.605 18.560 18.467 18.399

% of change 0.003 0.003 0.003 0.003 0.003
Random with high 34.027 34.344 34.709 34.064 34.696

% of change 0.003 0.004 0.006 0.003 0.004
Change X trend with low 21.342 20.982 20.869 21.161 21.235
Patterns % of change 0.003 0.003 0.005 0.003 0.004

X trend with high 28.371 28.150 28.208 28.211 28.436
% of change 0.004 0.003 0.005 0.004 0.004

Low Correlation to 21.910 21.943 22.085 21.442 21.400
Class Boundaries 0.004 0.004 0.004 0.003 0.004
High Correlation to 23.965 23.933 24.213 23.031 22.731
Class Boundaries 0.004 0.004 0.004 0.003 0.005  

 
 
An examination of Table 1 reveals a general increasing trend in overall PCC values as the 
temporal correlation between the time-1 and time-2 error patterns increases.  It is clear that 
differences exist in both the magnitude of PCC values observed and in the relative impact 
temporal dependencies have on the overall PCC values for the different types of change patterns.  
Additionally, when both change and error are correlated to classification boundaries, the overall 
PCC values are less then those observed when errors occur randomly throughout the grid area.  
Examining the standard deviations corresponding to each PCC value, it is evident that the 30 
error-perturbed change maps exhibited great similarity in their overall accuracy; all standard 
deviations are less than 0.01.  Therefore, although the relative differences between the various 
error patterns are small, these differences can be considered significant when incorporating the 
standard deviations. 
 
An examination of Table 2 reveals much different trends in user's accuracy values for the 
combined change classes when considering temporal dependencies as compared to those trends 
observed in Table 1.  First, not all change types exhibit an increase in user's change accuracy as 
the temporal correlation between the error patterns of time-1 and time-2 increases.  In fact, a 
decreasing trend is observed for both random change occurring in low percentages and change 
resulting from a trend in the X direction when errors are random at time-1.  Further, when errors 
at time-1 are correlated to classification boundaries, more change patterns show a decrease in 
their user's accuracy for the combined change classes.  Second, unlike Table 1, the change 
patterns that consider a trend in the X direction display higher accuracies when errors are 
correlated to classification boundaries as compared to errors occurring randomly throughout the 
grid.   However, some similarities to Table 1 remain.  First, Table 2 supports the observation that 
the various change patterns respond differently to temporal dependencies, and also reveals that 
the user's accuracy values for the combined change classes vary greatly among the change 
patterns.  Further, the user's accuracy values continue to exhibit decreased accuracy when both 
change and error are correlated to classification boundaries.  Finally, the standard deviations 



calculated from the distribution of user's change accuracies for each change/error combination 
remain small.  This indicates that there continues to be great similarity between the user's change 
accuracy values calculated for each error -perturbed change map within a single change/error 
combination, and that the perceived differences between patterns can be interpreted as 
significant. 
 
4. Discussion 
Several outcomes can be drawn from the  results presented above.  First, the presence of a 
temporal correlation between error patterns improved the overall accuracy of the change maps.  
For example, looking across any row in Table 1 illustrates that as the temporal correlation 
between time-1 and time-2 error patterns increased from 0 to 0.2 to 0.4, the overall mean PCC 
values also increased significantly.  Therefore, an increase in temporal correlation resulted in an 
increase in the overall accuracy for the error-perturbed change map.  This was the case for all 
change patterns.  However, it is interesting to note that the overall increase in accuracy differed 
among the various change patterns.  For example, changes that were random and occurred in low 
percentages saw an increase in accuracy of 2.238% from no temporal correlation to a 0.4 
temporal correlation, while changes that were highly correlated to classification boundaries and 
occurred in low percentages saw an increase of 1.829%.  Thus, a second conclusion that can be 
drawn from Table 1 is that certain change patterns are less affected by the presence of a temporal 
correlation. 
 
When comparing specific change patterns using the amount of relative change, lower levels of 
observed change were more affected by temporal correlations.  For example, the gain in accuracy 
for the random change pattern with a low percent of net change was 2.238% when increasing the 
temporal correlation form 0 to 0.4 as compared to an increase of 1.298% for the random change 
pattern with a high percent of net change.  This pattern also holds true for change resulting from 
a trend in the X direction.  Therefore, as the amount of change occurring between time-1 and 
time-2 decreased, the presence of a temporal correlation became more important in terms of the 
impact it had on the overall accuracy of the change map.  Additionally, cases where both the 
change probability surface and error probability surface were correlated to the time-1 
classification boundaries showed lower overall accuracy values, even in the presence of a 
temporal correlation.  For example, the gain in accuracy for changes that were highly correlated 
to classification boundaries and occurred in low percentages when errors were randomly located 
at time-1 and the temporal correlation was increased from 0 to 0.4 was 1.829% as compared to a 
gain of only 1.238% when errors were correlated to time-1 classification boundaries.  As 
expected, both change patterns that centered high change probabilities at the classification 
boundaries showed lower overall accuracies than the other four change patterns when high error 
probabilities were also centered at classification boundaries. 
 
Unfortunately, many of these same conclusions do not hold true when considering the results of 
Table 2, which illustrated how well the error-perturbed change maps performed at specifically 
predicting land-cover transitions.  First, the presence of a temporal correlation between error 
patterns did not necessarily improve the accuracy of the change maps in predicting land-cover 
transitions.  Only two of the six change patterns consistently increased in accuracy as the 
temporal correlation between time-1 and time-2 error patterns increased from 0 to 0.2 to 0.4 
when considering random error patterns at time-1.  Therefore, an increase in temporal correlation 



did not correspond to a clear or significant relationship in the accuracy of predicting change for 
the error-perturbed change maps. 
 
Second, while clear differences among the various change patterns were also observed when 
examining Table 2, the relationships and conclusions drawn from user's change accuracies were 
often the opposite of those drawn from overall accuracies in Table 1.  For example, Table 1 
showed that as the amount of change occurring between time-1 and time-2 decreased, the 
presence of a temporal correlation became more important in terms of the impact it had on the 
overall accuracy of the change map.  Examining Table 2 shows that when considering error 
randomly located at time-1, an increase in temporal correlation has a greater impact on change 
patterns exhibiting a higher percentage of change.  Changes that were random and occurred in 
low percentages saw a decrease in user's change accuracy of 0.259% from no temporal 
correlation to a 0.4 temporal correlation, while changes that were random and occurred in high 
percentages saw an increase in accuracy of 0.682%.  Thus, as the amount of change occurring 
between time-1 and time-2 increased, the relative magnitude of the accuracy in predicting land-
cover transitions was more affected by the presence of a temporal correlation.  In other words, 
the presence of a temporal correlation between error patterns over time impacted low percent 
change cases more in terms of overall accuracy, but impacted high change cases more in terms of 
the accuracy in actually predicting change. 
 
However, some conclusions drawn from Table 1 are also supported by the results of Table 2.  
First, it is clear that certain change patterns are less affected by the presence of a temporal 
correlation than others.  Using the example illustrated previously for overall accuracies, changes 
that were random and occurred in low percentages saw a decrease in accuracy of 0.259% from 
no temporal correlation to a 0.4 temporal correlation, while changes that were highly correlated 
to classification boundaries and occurred in low percentages saw an increase of 0.249%.  Thus, 
the type of change pattern considered continues to play an important role in determining the 
relative impact temporal dependencies have on the accuracy of predicting land-cover transitions.  
Second, cases where both the change probability surface and error probability surface were 
correlated to the time-1 classification boundaries had user's change accuracies that were smaller 
then those observed when errors were random at time-1.  For example, the gain in accuracy for 
changes that were highly correlated to classification boundaries and occurred in low percentages 
when errors were randomly located at time-1 and the temporal correlation was increased from 0 
to 0.4 was 0.175% as compared to a decrease of 0.51% when errors were correlated to time-1 
classification boundaries and the temporal correlation was increased to 0.4.  Again, both change 
patterns that centered high change probabilities at the classification boundaries saw a larger 
magnitude in the decrease of user's accuracy for change when high error probabilities were also 
centered at classification boundaries than the other four change patterns. 
 
5. Conclusion 
In summary, the above conclusions support the conjecture that different change and error 
patterns have significantly different effects on both the overall accuracy of the change map and 
the accuracy in predicting the occurrence of land-cover transitions.  Further, the impact of the 
presence of a temporal correlation between error patterns over time differs with varying change 
and error patterns.  However, two differing overall conclusions can be drawn from each table: 1) 
an increase in temporal dependence between error surfaces, regardless of whether time-1 errors 



are randomly located or centered near classification boundaries, led to a significant increase in 
the overall accuracy of the error-perturbed change maps, and 2) an increase in temporal 
dependence between error surfaces, regardless of whether time-1 error are randomly located or 
centered near classification boundaries, did not result in a significant or predictable relationship 
when considering the reliability of the land-cover transitions predicted by the error-perturbed 
change maps.  Therefore, the presence of a temporal dependence between the error patterns 
associated with each classified map increased the overall accuracy of the resulting change map, 
but did not lead to an increase in accuracy for predicting actual land-cover changes.  While these 
conflicting results remain, this research clearly demonstrates that temporal dependencies must be 
considered when attempting to quantify the accuracy of land-cover-change maps.  Further, the 
relative impact of a temporal dependence on both the overall accuracy and the accuracy in 
predicting land-cover transitions is dependent upon the pattern of change and pattern of error 
associated with a time-series of classified maps.  Thus, both the presence of a temporal 
dependence between the errors of classified images and the pattern and magnitude of change 
occurring over time are critical to understanding the accuracy of a change map. 
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