
 1 

 1 

Incorporating both Geographical Space and Attribute Space into the Kernel 2 

Weighting Function of Geographically Weighted Regression 3 

 4 

Haijin Shi, Lianjun Zhang, and Jianguo Liu 5 

 6 

 7 

 8 

 9 

 10 

 11 

_________________________ 12 

Haijin Shi (corresponding author), Research Associate, Phone: (517) 432-8256, Fax: (517) 432-13 

1699, E-mail: hshi@msu.edu, Department of Fisheries and Wildlife, 13 Natural Resources 14 

Building, Michigan State University, East Lansing, MI. 48824.  15 

Lianjun Zhang, Professor, Phone: (315) 470-6558, Fax: (315) 470-6535, E-mail: 16 

lizhang@esf.edu, Faculty of Forest and Natural Resources Management, State University of 17 

New York, College of Environmental Science and Forestry, One Forestry Drive, Syracuse, NY 18 

13210. 19 

Jianguo Liu, Rachel Carson Chair, Professor, Phone: (517) 355-1810, Fax: (517) 432-1699, 20 

jliu@panda.msu.edu, Department of Fisheries and Wildlife, 13 Natural Resources Building, 21 

Michigan State University, East Lansing, MI. 48824. 22 

 23 
 24 



 2 

Abstract 1 
Geographically Weighted Regression (GWR), following the general principle of local smoothing 2 

and locally weighted regression, has been developed to study the spatial heterogeneity in a 3 

regression context. The kernel weighting function is the key component used to account for the 4 

spatial heterogeneity in GWR. The spatial he terogeneity generally results from both 5 

“geographical space” and “attribute space”. However the current kernel weighting function only 6 

considers the geographical distances of the neighbors from a focal point in the study area, while 7 

the attributes of the focal point and its neighbors are totally ignored. In this study, we proposed a 8 

new kernel weighting function that combines the “geographical space” and “attribute space” 9 

between the focal point and its neighbors such that (1) neighbors with greater geographical 10 

distances from the focal point are assigned smaller weights, and (2) at a given geographical 11 

distance, neighbors with similar sizes to the focal point are assigned larger weights. The 12 

characteristics of the new weighting function are investigated with four tree attributes, diameter 13 

at breast height (DBH), DBH2, area potentially available (APA) and Hegyi’s competition index 14 

(CI), and the new weighting function is also tested using three simulated forest stands with 15 

different spatial patterns. The results indicate that smaller model residuals and better predictions 16 

can be obtained from the GWR model with the new spatial-attribute kernel weighting function 17 

than that from the traditional GWR model. 18 

 19 
Key words: Geographically weighted regression, spatial pattern analysis, spatial heterogeneity, 20 
locally weighted regression. 21 
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Introduction 1 

Local modeling has become an increased interest in recent years. A number of 2 

approaches, such as spline functions and kernel regression, have been developed for examining 3 

local relationships in nonspatial data (Wahba 1990; Green and Silverman 1994; Cleveland and 4 

Devlin 1988). In spatial data, geographically weighted regression (GWR) has become popular 5 

for depicting the spatial heterogeneity in a regression context in recent years (Brundson et al. 6 

1996; Fotheringham et al. 2002; Zhang and Shi 2004). In GWR, any spatial heterogeneity in the 7 

relationship is accounted for by the local estimation of model coefficients through a spatial 8 

weighting function. This spatial weighting function is a decreasing function of distance 9 

(geographical space) from the focal observation (x0) so that the impact of the neighbors (xi, 10 

i=1…k , k  is the number of neighbors) nearby is stronger than those farther away. In general, 11 

spatial data consist of both attribute and spatial information (e.g., spatial coordinates; 12 

Fotheringham et al. 2002).  GWR uses only the distance (geographical space) to determine the 13 

weights. It may not be realistic and reasonable, because the effects of the attributes of the focal 14 

observation and its neighbors are totally ignored. In other words, no matter how large or small of 15 

the attributes of its neighbors, if they have the same geographical distance from the focal 16 

observation, they would have the same weight. Apparently, the attribute information should be 17 

considered in the weighting function. 18 

The development of GWR follows the general principle of local smoothing and locally 19 

weighted regression (Leung et al 2000; Páez et al 2002), in which the weights are determined by 20 

the size of the residuals (Cleveland 1979; Cleveland and Devlin 1988; Casetti 1982; Casetti and 21 

Can 1999). For a given focal point x0 in the locally weighted regression, if the sizes of its 22 

neighbors xi are similar to the size of x0, the “distance of attribute space” between x0 and xi is 23 
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small. These neighbors are assigned large weights by the weighting function. In contrast, its 1 

neighbors xi, with the sizes dissimilar to the size of the x0, are assigned small weights because 2 

they are far away from x0 in the “distance of attribute space”. In other words, the weights are 3 

determined by the “attribute space” instead of the “geographical space” (Leung et al. 2000). This 4 

approach pays more attention to the fitting of the dependent variable rather than on spatially 5 

varying parameters. However, the “attribute space” approach does not consider geographical 6 

locations of the neighbors and the relative distance (geographical space) between x0 and xi. 7 

In this study, we propose a new approach that will incorporate the attribute of the 8 

observations into the spatial weighting function used in GWR. The new weighting function will 9 

combine the “geographical space” and “attribute space” between the focal point (x0) and the 10 

neighbors (xi) such that (1) the neighbors (xi) with large geographical distances from x0 will be 11 

assigned small weights, and vice versa, and (2) at a given geographical distance, the neighbors 12 

(xi) with similar attributes to x0 will be assigned large weights, and vice versa. The properties of 13 

the “spatial-attribute” weighting function were tested with simulated forest stands (see Data 14 

section) with regard to spatial continuity as well as statistical and biological interpretation.  15 

One attribute and three attribute functions were used once at a time in the spatial-attribute 16 

weighting function. The attribute used in this study is the tree diameter at breast height (DBH).  17 

The three attribute functions are DBH2 and two traditional competition indices (CI), Hegyi’s CI 18 

(Hegyi 1974) and area potentially available (APA; Brown 1965; Moore et al 1973). In general, 19 

the tree attribute is defined as the measurable tree characteristics (e.g., DBH). However, for 20 

simplicity, we defined these three attribute functions as tree attributes in this study. DBH2 is 21 

proportional to the tree basal area. The selection of these attributes is to test whether different 22 

tree characteristics can alter the model performance. The reason of choosing APA and Hegyi’s 23 
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CI is that they have been widely used in forest growth and yield models (Newton and Jolliffe 1 

1998; Shi and Zhang 2003), and demonstrated that they are useful indices for measuring tree 2 

competition (Moore et al. 1973; Biging and Dobbertin 1995). Another reason is that a large 3 

Hegyi’s CI means the subject tree has relatively strong competition from its neighbors, however 4 

a large APA indicates that the subject tree has stronger competition than its neighbors. 5 

Therefore, these two CIs have opposite meaning for interpreting tree competition. It is useful to 6 

test the performance of the spatial-attribute weighting function. 7 

The objectives of this study were (1) to generate three example plots with different spatial 8 

patterns (i.e. regular, random, and clustered) of tree locations, (2) to model the relationship 9 

between tree size and growth using the GWR methodology with different weighting functions 10 

(i.e. spatial weighting and spatial-attribute weighting functions), and (3) to compare and evaluate 11 

the performance of the two weighting functions for modeling the effects of spatial heterogeneity 12 

on tree growth. 13 

Data 14 

Three example plots used in this study were generated using a process-based stand model 15 

AMORPHYS (Valentine et al. 2000). This public-domain software is developed by USDA 16 

Forest Service Northeastern Research Station and can be downloaded from the web site 17 

“http://ftp.fs.fed.us/ne/durham/4104/products/InstallAMORPHYS.ex_”. AMORPHYS can (1) 18 

generate the locations of model trees, (2) sample tree diameters from a target distribution (e.g., a 19 

two-parameter Weibull) and assign those diameters to model-tree locations, (3) compute other 20 

tree attributes such as height and crown length, and (4) predict tree growth (Valentine et al. 21 

2000). The generation of tree locations (coordinates) is based on an algorithm called LPOINT 22 

(Penridge 1986) that can produce two-dimensional point patterns from regular, through Poisson 23 
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or random, to strongly clumped, depending on the values of two parameters, ? and ?. ? is the 1 

randomness parameter and ? is the mean point density (for detailed information, see Penridge 2 

1986). 3 

We generated an example plot for each of three spatial patterns, i.e. regularity, 4 

randomness, and clustering. Each example plot was a 100 x 100 m square plot. The initialization 5 

of the plots was manually set up for the model (Table 1). The specifications of the model 6 

parameters were (1) regular plot: ? = 0.45 and ? = 1.0, (2) random plot: ? = 1.0 and ? = 1.0, and 7 

(3) cluster plot: ? = 10.0 and ? = 5.0. Figure 1 shows the map of tree locations for the three 8 

example plots. Then tree initial diameters were obtained from a Weibull distribution and were 9 

assigned to the tree locations. The trees in the three plots were projected for a growth period of 5 10 

years. The descriptive statistics of tree initial diameter at breast height (DBH) and 5-year basal 11 

area growth (BAG) were listed in Table 2.  12 

Methods 13 

(1) GWR Model  14 

Suppose we have a set of n observations {Xij} with the spatial coordinates {(u i, vi)}, i = 1, 15 

2, …, n, on p independent or predictor variables, j = 1, 2, …, p, and a set of n observations on a 16 

dependent or response variable {yi}. The underlying model for GWR is  17 
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The estimator of ßi is given by GWR: 1 
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After the GWR model regression, a set of parameter estimates can be obtained for each data 3 

point. The weights (wij) in the weight matrix Wi(u i, vi) is a decreasing function of distance d ij 4 

between subject i and its neighboring location j. In general, the spatial weighting function is 5 

taken as the exponential distance-decay form:  6 
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where h is called kernel bandwidth. If locations i and j coincide (i.e., d ij = 0), wij equals one; 8 

while wij decreases according to a Gaussian curve as the distance d ij increases. However, the 9 

weights are nonzero for all data points, no matter how far they are from the center i 10 

(Fotheringham et al. 2002). The kernel bandwidth can be determined by (1) predefined kernel 11 

bandwidth; (2) Minimum Akaike Information Criterion (AIC); (3) cross-validation procedure; 12 

(Fotheringham et al 2002; Zhang and Shi 2004). 13 

(2) Spatial-Attribute Weighting Function 14 

The spatial weighting function (Equation [5]) only takes the geographical distance into 15 

account, and ignores the influence of the observation’s attributes. Since both tree size and 16 

location have strong impacts on competition among trees, crown structure, growth, and mortality 17 

(e.g., Miller and Weiner 1989; Moeur 1993; Newton and Jollife 1998), we propose to modify 18 

Equation [5] as follows:  19 
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where f(τ) is a function that changes the weight wij according to the difference (τ) between the 1 

size of the focal tree and its neighbors.  2 

Following the idea of the weighting function in locally weighted regression techniques 3 

(Cleveland 1979; Castti 1982; Cleveland and Devlin 1988), the weight should decrease as the 4 

difference between the focal observation (i) and its neighbors (j) increases. The symmetric 5 

weight is one of the important properties of the weighting function because it reduces bias 6 

(Cleveland and Devlin 1988). The f(τ) function can be bisquare, “tribcube”, or exponential 7 

functions, therefore we propose the following format for the f(τ) function: 8 
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where ATTii is the attribute of the focal tree i, and ATTij is the same attribute of the neighboring 10 

tree j. In this study, the tree attributes include DBH, DBH2, Hegyi’s CI and APA. APA requires 11 

construction of Voronoi polygons (via the Dirichlet tessellation) around each tree. The distance 12 

between each tree is bisected at right angles, and these successive right angle lines are joined to 13 

form a polygon. Hegyi’s CI is defined as: 14 

∑=
n

j
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where i denotes the subject tree, j denotes the neighboring competitor, DBH is the diameter at 16 

breast height, cij(d) is a spatial matrix for a given bandwidth (h), n is the number of neighbors 17 

inside a neighborhood zone of the subject tree, Lij is the distance between tree i and tree j. 18 

The spatial-attribute weighting function (Equation [6]) takes into account both the 19 

geographical distance and the attribute of the focal tree and its neighbors. If the tree attributes 20 

(e.g., DBH) of the neighboring trees are greatly different from a given focal tree, the smaller 21 

weights are assigned to these neighboring trees. In contrast, if the differences of tree attributes 22 
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between the focal tree and its neighbors are small, larger weights are assigned according to 1 

Equation [6]. In the case that the size of a neighboring tree is the same as the focal tree (i.e., 2 

f(τ)=1), the weight for that tree is determined by the spatial distance only. Biologically, it implies 3 

that the competition is a reciprocal process. Large trees have influence on small trees, however 4 

small trees also compete for resources with large trees. 5 

(3) Regression Model 6 

Many models for tree diameter or basal area growth have been developed over the past 7 

several decades. Different models work well under different conditions (Vanclay 1994). In this 8 

study, we chose the following linear regression model to investigate the differences between the 9 

spatial weighting function (Equation [5]) and the spatial-attribute weighting function (Equation 10 

[6]) used in the GWR model. 11 

( ) ( ) εβββ +⋅+⋅+=+ 2
210 ),(log),(),(1log DBHvuDBHvuvuBAG  [8] 12 

where BAG is the basal area growth, DBH is the initial tree DBH, log is a 10-based logarithm, 13 

ß0(u, v)~ ß2(u, v) are regression coefficients to be estimated, and e is the model random error. If 14 

the spatial coordinates are removed from the above model, Equation [8] becomes the derivative 15 

model of the Bertalanffy growth function, which has been used as a basic function in several 16 

forest growth and yield models due to its simplicity and robust predictions (e.g., Wykoff 1990; 17 

Hann and Larsen 1991; Vanclay 1994; Monserud and Sterba 1996).  18 

(4) Model Comparison and Evaluation 19 

The GWR models with the spatial and spatial-attribute weighting functions were 20 

compared based on the criteria of the root mean square error (RMSE) and bias (Maltamo et al. 21 

1995) such as  22 
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where n is the number of observations, BAGi is the basal area growth (BAG) of the ith tree, 2 

iGBA ˆ  is the predicted BAG of the ith tree.  3 

Model residual (RS = observed - predicted) and absolute model residual (ARE = 4 

|observed - predicted|) were also evaluated across diameter classes. Then paired t-tests were used 5 

to compare the differences of RS and ARE between the GWR models with the two weighting 6 

functions. Finally, the contour plots of the parameter estimates from the two weighting functions 7 

were mapped for spatial assessment. 8 

Results 9 

 (1) Determination of Kernel Bandwidth 10 

In this study, we decided to predefine the bandwidth for the three example plots based on 11 

the variogram of the OLS model residuals. Because of the relatively small size of the example 12 

plot, reasonable kernel bandwidth can not be obtained using the cross-validation procedure and 13 

minimum AIC approach. The variogram curves indicate that the ranges of these variograms 14 

(Figure 2) for the three example plots were 10m (regular plot), 7m (random plot), and 6m 15 

(clustered plot), respectively. Since the range of a variogram indicates that there was no spatial 16 

autocorrelation between trees beyond the distance (Isaaks and Srivastava 1989; Kohl and Gertner 17 

1997), we chose these three range distances as the bandwidth for the three example plots. In 18 

addition, similar distances (or kernel bandwidth) have been used in other studies of distance-19 

dependent competition indices (e.g., Pukkala 1989; Kenkel et al. 1989; Rouvinen and 20 

Kuuluvainen 1997; Shi and Zhang 2003; Zhang and Shi 2004).  21 

(2) Evaluation of We ighting Functions  22 
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In order to evaluate the spatial and spatial-attribute weighting functions, three trees were 1 

randomly chosen from the three example plots (Figure 1 and Table 3). In general, the mean and 2 

standard deviations of the weights obtained from the spatial-attribute weighing function were 3 

smaller than those from the spatial weighting function. The small average of weights obtained 4 

from the spatial-attribute weighting function ensures that the homeskedasticity of errors over all 5 

predictor variables (e.g., DBH) for each focal tree. It is one of basic assumptions in linear 6 

regression. Statistically, the spatial-attribute weights can improve estimation efficiency and 7 

achieve unbiased estimation of the standard error of model parameters (Table 3). From the 8 

biological point of view, it indicates a two-way competition during tree growth, meaning all trees 9 

(large or small) compete for resources from the environment regardless of their sizes.  10 

The BAGs predicted with the spatial-attribute weighting GWR model were closer to the 11 

observed BAG than those predicted from the spatial weighting GWR model. For example, Tree 12 

A was a large tree in the random plot (Figure 1b). Its nearer neighbors included large trees and 13 

small trees within the kernel bandwidth of 7 m. Because the spatial-attribute weighting function 14 

incorporated not only the tree sizes (competition) but also the geographical distances (spatial 15 

impact) for the computation of weights, it resulted in better prediction for BAG. When the tree 16 

DBH was used in the spatial-attribute weighting function, the predicted BAG was 0.0097, 17 

however it was 0.0096 for the spatial weighting GWR model. Better predictions can also be 18 

obtained with DBH2, APA and Hegyi’s CI used in the spatial-attribute weighting function when 19 

compared with the observed BAG (Table 3). Because the predicted BAGs were closer to the 20 

observed BAG when the spatial-attribute weighting function was used than that obtained from 21 

the spatial weighting function, the model residuals for this focal tree A were small.  22 
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The comparison among the predicted BAGs obtained from the spatial-attribute weights 1 

indicated that APA and Hegyi’s CI were better than DBH and DBH2 (Table 3). For example, the 2 

model residual was 0.00028, when DBH and DBH2 were used in Equation [7] for the tree A in 3 

the clustered plot. However, it was 0.00008 for APA and Hegyi’s CI. These two competition 4 

indices are the indicators of tree competition, which might be more accurately represent the local 5 

condition, therefore better predictions can be gained.  6 

For further comparing the difference between these two weighting functions, we took tree 7 

A in the clustered plot as an example. The comparison of Figure 3a with Figure 3b, 3c, 3d, and 8 

3e indicated that the weights obtained from the spatial weighting function was different from 9 

these obtained from the spatial-attribute weighting function. The weights obtained with different 10 

attributes were also different. The decay rates of the spatial-weighting function (Equation [6]) 11 

with the attributes of DBH2 and Hegyi’s CI were larger than these with DBH and APA (Figure 12 

3). The spatial-attribute weights obtained with DBH and APA had a similar trend. Generally, 13 

APA is positively correlated with DBH. In other words, large trees have large APA. Therefore 14 

large trees can gain more space, light, and nutrient than small trees. Hegyi’s CI has the opposite 15 

meaning of APA. Large Hegyi’s CI indicates the subject tree has strong competition from its 16 

neighbors. In general, small trees have large Hegyi’s CI. According to our comparison between 17 

the spatial-attribute weights obtained using the competition indices, although they might be the 18 

positively or negatively correlated with the tree size (i.e., DBH), they all followed the same 19 

trend. The larger the difference in tree attributes (e.g., APA), the smaller the weight. The closer 20 

the distance from the focal tree, the larger the weight. 21 

(3) Evaluation of Model Performance  22 
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The GWR model was fit to the data of the three example plots. The predicted BAG was 1 

obtained for each tree, and the RS, ARS, and RMSE were computed for each plot. The new 2 

spatial-attribute weighting function always produced smaller RMSE than that of the spatial 3 

weighting function, regardless of the spatial patterns of the example plots (Table 4). It implies 4 

that the GWR model (Equation [2]) fits the data better if the spatial-attribute weighting function 5 

is used.  6 

In general, the GWR model with the spatial-attribute weighting function produces smaller 7 

RS than that with the spatial weighting function (Figure 4). However, the difference between the 8 

spatial weighting and spatial-attribute weighting functions is smaller for the regular plot (Figure 9 

4a) than those for the random plot (Figure 4b) and clustered plot (Figure 4c). With the spatial 10 

pattern from regularity to clustering, the model residuals obtained from the two weighting 11 

functions become more dissimilar to each other. It indicates that the spatial pattern may have a 12 

significant impact on the model performance. For the spatial-attribute weighting function, 13 

different tree attributes resulted in different model residuals, however they were generally 14 

smaller than that obtained from the spatial weighting function.  15 

The absolute model residuals obtained from the spatial-attribute weighting function were 16 

always smaller than that from the spatial weighting function (Figure 5). However, the absolute 17 

model residuals have very similar patterns across the diameter classes between the two weighting 18 

functions. The absolute model residual tends to decrease across the diameter classes for the 19 

regular plot (Figure 5a), while it increases first from the diameter class 2 to 6 cm and then 20 

decreases beyond 6 cm for the random plot (Figure 5b) and clustered plot (Figure 5c). The 21 

absolute model residual with DBH2, APA and Hegyi’s CI was generally smaller than that with 22 

DBH. 23 
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 The results of the paired t-tests indicate that there are no significant differences in model 1 

residuals between the spatial and spatial-attribute weighting GWR models (Table 5). It is 2 

expected because the mean of the residuals from an unbiased model should be close to zero; 3 

consequently the difference between the means from the two GWR models should also be close 4 

to zero. On the other hand, the absolute model residuals represent the magnitudes of the residuals 5 

regardless of whether they are positive or negative. The paired t-tests for the absolute model 6 

residuals indicate that there are significant differences between the two weighting functions, and 7 

the GWR model with the spatial-attribute weighting function produces model errors smaller in 8 

magnitude than the one with the spatial weighting function (Table 5). 9 

Conclusions 10 

In general, the spatial-attribute weighting function performs better than the spatial 11 

weighting function using the simulated forest stands. Similar results can be obtained with other 12 

spatial data due to the mathematical properties embedded in Equation [6] and [7]. By improving 13 

the model fitting by the spatial-attribute weighing method, we can obtain a more accurate 14 

prediction of forest growth and yield. Forest researchers can use it to investigate the complex 15 

relationships among forest competition and growth incorporating spatial variation (Zhang and 16 

Shi 2004).  17 

The GWR method is a useful tool to investigate spatial heterogeneity according to the 18 

analysis of the model fitting with our simulated example plots (i.e. regular, random, and 19 

clustered plots). Not only the spatial information but also the attribute of trees can be 20 

incorporated into the weighting function of the GWR model. Our results indicate that no matter 21 

what spatial patterns existed in the stand or what attributes were used, the performance of the 22 

GWR model with the spatial-attribute weighting method would be better than that without it. 23 
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Furthermore, if trees were not distributed evenly in the stand, the spatial-attribute weighting 1 

GWR model would provide better predictions. With the development of Geographic Information 2 

System (GIS), the GWR model can be easily incorporated into GIS to simulate forest dynamics 3 

at the stand and landscape scales. 4 
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Table 1. The initialization of the three example plots. 1 

Spatial 
pattern 

Tree 
Species 

Number of 
Trees 

Minimum 
DBH (cm) 

Maximum 
DBH (cm) 

Plot Size  
(m2) 

Buffer 
Zone (m) 

Regular Loblolly 
Pine 

100 7.5 20 10000 10 

Random Loblolly 
Pine 

150 5.0 20 10000 10 

Clustered Loblolly 
Pine 

200 2.5 20 10000 10 

Note: DBH is the diameter at the breast height. 2 

 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
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Table 2. Descriptive statistics of individual tree measurements before and after the plot 1 
projection.  2 
 3 
 Regular Plot  
Variable  N Mean Std Dev Minimum Maximum
DBHa (cm) 100 10.5982 2.7772 5.5300 16.9100
DBHb (cm) 95 21.7220 2.5856 14.8200 25.7500
BAG (m2/tree) 95 0.0090 0.0014 0.0047 0.0106
 Random Plot  
Variable  N Mean Std Dev Minimum Maximum
DBHa (cm) 150 8.7152 3.2013 2.9400 17.01
DBHb (cm) 142 19.2979 3.4833 11.8400 25.8600
BAG (m2/tree) 142 0.0075 0.0020 0.0033 0.0105
 Clustered Plot  
Variable  N Mean Std Dev Minimum Maximum
DBHa (cm) 200 7.1711 3.0235 2.5000 16.1600
DBHb (cm) 169 17.5802 3.4649 9.6600 25.0200
BAG (m2/tree) 169 0.0065 0.0019 0.0023 0.0106
 4 
Note:  5 
a tree measurements before the plot projection. 6 
b tree measurements after the plot projection. 7 
BAG is the basal area growth during the 5-year growth period 8 
 9 

 10 

 11 
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Table 3. Examples of the impact of the two weighting function on the model estimation with different spatial patterns. 1 

    Spatial Weight Spatial-attribute Weight 
       DBH DBH2 APA Hegyi's CI  

wij wij wij wij wij wij wij wij wij wij 
Plot Tree 

Mean Std 

Predicted 
BAG Mean Std 

Predicted 
BAG Mean Std 

Predicted 
BAG Mean Std 

Predicted 
BAG Mean Std 

Predicted 
BAG 

Observed 
BAG 

 A 0.0423 0.1629 0.0099 0.0234 0.1176 0.0099 0.0340 0.1489 0.0100 0.0249 0.1393 0.0099 0.0322 0.1499 0.0099 0.00999 

Regular B 0.0255 0.1163 0.0094 0.0223 0.1128 0.0095 0.0198 0.1105 0.0091 0.0211 0.1105 0.0096 0.0162 0.1057 0.0095 0.00968 

 C 0.0311 0.1304 0.0089 0.0368 0.1543 0.0089 0.0181 0.1111 0.0089 0.0256 0.1199 0.0089 0.0199 0.1113 0.0089 0.00886 

 A 0.0129 0.0894 0.0096 0.0143 0.1052 0.0097 0.0088 0.0843 0.0101 0.0085 0.0845 0.0100 0.0071 0.0839 0.0101 0.01000 

Random B 0.0115 0.0899 0.0096 0.0094 0.0859 0.0095 0.0086 0.0853 0.0098 0.0091 0.0857 0.0098 0.0072 0.0839 0.0098 0.00950 

 C 0.0146 0.0931 0.0077 0.0109 0.0884 0.0077 0.0099 0.0871 0.0076 0.0113 0.0890 0.0076 0.0108 0.0883 0.0076 0.00761 

 A 0.0202 0.1145 0.0061 0.0221 0.1025 0.0062 0.0149 0.1035 0.0062 0.0157 0.1052 0.0064 0.0097 0.0826 0.0064 0.00648 

Clustered B 0.0172 0.1047 0.0075 0.0080 0.0799 0.0076 0.0123 0.0926 0.0076 0.0115 0.0865 0.0075 0.0159 0.1077 0.0081 0.00763 

 C 0.0179 0.1032 0.0076 0.0118 0.0716 0.0076 0.0123 0.0881 0.0078 0.0129 0.0905 0.0076 0.0073 0.0785 0.0078 0.00787 

 2 
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Table 4. The RMSE of the GWR models with the two weighting functions. 1 

 RMSE  
Weighting Function Regular Plot Random Plot Clustered Plot 

Spatial weighting  0.000068 0.000125 0.000115 
DBH 0.000057 0.000105 0.000094 

DBH2 0.000048 0.000088 0.000114 

APA 0.000055 0.000083 0.000071 
Spatial-attribute 

weighting 

Hegyi’s CI  0.000042 0.000079 0.000078 
  2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 
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Table 5. The paired t-tests for model residuals and absolute model residuals obtained from the 1 

GWR models with different weighting functions. 2 

Model Residuals Model Absolute Residuals 
Plot Attribute  

p-value  p-value  

DBH 0.6850 <0.0001 

DBH2 0.3019 <0.0001 

APA 0.7868 <0.0001 
Regular 

Hegyi’s CI 0.5036 <0.0001 

DBH 0.5243 <0.0001 

DBH2 0.7046 <0.0001 

APA 0.3295 <0.0001 
Random 

Hegyi’s CI 0.0638 <0.0001 

DBH 0.8383 <0.0001 

DBH2 0.1525 0.0003 

APA 0.1525 <0.0001 
Clustered 

Hegyi’s CI 0.0611 <0.0001 

 3 

 4 

 5 

 6 

 7 

 8 

 9 
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Figure 1 . Map of tree locations for the three example plots: (a).Regularity; (b). Randomness; and 1 
(c). Clustering. (The circle is proportional to the tree DBH). 2 
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c.  1 
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 3 
Figure 2. Variogram of the OLS model residuals: (a). Regularity, (b). Randomness, (c). 4 
Clustering. 5 
a. 6 

.0 10.0 20.0 30.0 40.0 50.0 60.0

distance (m)

0.
0

1.
0*

10
-0

08
2.

0*
10

-0
08

3.
0*

10
-0

08
4.

0*
10

-0
08

ga
m

m
a

 7 



 28 

b.  1 

0 10 20 30 40 50 60
distance (m)

0.
0

5.
0*

10
-0

08
1.

0*
10

-0
07

1.
5*

10
-0

07

ga
m

m
a

 2 

 3 

c. 4 

0 20 40 60
distance (m)

0.
0

4.
0*

10
-0

08
8.

0*
10

-0
08

1.
2*

10
-0

07

ga
m

m
a

 5 
 6 



 29 

Figure 3. An example of spatial weight and spatial-attribute weight with different tree attributes 1 
(i.e., DBH, Hegyi’s Ci, APA, and DBH2): tree A in the clustered plot (Note, for other trees in the 2 
regular, random and clustered plots, similar results can be obtained). Distance= the distance (m) 3 
between the subject tree and its neighboring trees. Wij=spatial-attribute weight. DBH=diameter 4 
at breast height (cm)).  5 
a. Spatial weight; b. Spatial-attribute weight with DBH; c. Spatial-attribute weight with DBH2; d. 6 
Spatial-attribute weight with APA; e. Spatial-attribute weight with Hegyi’s CI. 7 
 8 
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Figure 4 . Model residuals across the diameter classes: (a). Regularity; (b). Randomness; and (c). 1 
Clustering. 2 
a.    3 

-0.000020

-0.000015

-0.000010

-0.000005

0.000000

0.000005

0.000010

0.000015

6 10 14 18
Diameter class (cm)

M
o

d
el

 r
es

id
u

al

Spatial weight
Spatial-attribute weight with DBH
Spatial-attribute weigt with APA
Spatial-attribute weigt with Hegyi's CI
Spatial-attribute weight with DBH2

 4 

 5 

 6 

b.  7 

    

-0.000024

-0.000016

-0.000008

0.000000

0.000008

0.000016

0.000024

2 6 10 14 18
Diameter class (cm)

M
o

d
el

 r
es

id
u

al

Spatial weight
Spatial-attribute weight with DBH
Spatial-attribute weight with APA
Spatial-attribute weight with Hegyi's CI
Spatial-attribute weight with DBH2

 8 

 9 



 33 

 1 

c. 2 

     

-0.000020

-0.000015

-0.000010

-0.000005

0.000000

0.000005

0.000010

0.000015

2 6 10 14 18
Diameter class (cm)

M
o

d
el

 r
es

id
u

al

Spatial weight
Saptial-attribute weight with DBH
Spatial-attribute weight with APA
Spatial-attribute weight with Hegyi's CI
Spatial-attribute weight with DBH2

 3 

Figure 5. Absolute model residuals across the diameter classes: (a). Regularity; (b). 4 
Randomness; and (c). Clustering. 5 
a. 6 
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