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Abstract 
Neutral landscape models were introduced as a method for comparing the 
quantifiable characteristics of disparate landscapes. Tests of observed 
landscapes against replicate random maps reveal the degree of differences 
due to the structure and hypothesized underlying processes. A related central 
concept, percolation theory, is used to define and characterize relationships 
between patterns and probability values (p) with the existence of a critical 
threshold value of p (pc). Changes in critical threshold values in neutral 
models can reflect significant changes in landscape function and integrity or 
may erroneously mask or create change when none exists. Therefore, 
statistical methods used to define such thresholds need to be explored. This 
paper reproduces historical percolation studies, which tested the influence of 
neighborhood configuration on spanning cluster creation. This research 
advances percolation theory and demonstrates the significant influence that 
small changes in model parameters near a critical threshold may result in 
disproportionately large changes in degrees of landscape fragmentation and 
its surrogate, connectivity. 
 

1. Introduction  
Ecological systems are extraordinarily complex and combine far too many elements for 
exhaustive, completely specified deterministic models.  However, creating generalizable 
models using landscape patterns and processes introduces significant statistical 
violations. Neutral landscape models were introduced as a method for comparing the 
quantifiable characteristics of disparate landscapes (Gardner et al., 1987). Tests of 
observed landscapes against replicate random maps revealed the degree of differences 
due to the structure and hypothesized underlying processes (e.g., Qi, 1996; Boswell et al., 
1998; Saura and Millan, 2000). A central concept, percolation theory, is used to define 
and characterize relationships between patterns and probability values (p) with the 



existence of a critical threshold value of p (pc) (Stauffer, 1985; Orbach, 1986; With, 
1997). As maps are generated with successively greater values of p, the process of cluster 
formation is nonlinear, and a single cluster that extends or percolates from one edge of 
the map to the other is ultimately formed (Turner, 1989; With and Crist, 1995; Turner et 
al., 2001). Although, many papers study patterns, processes, and how “spanning cluster” 
formation occurs over landscapes using neutral models, the critical values that were used 
and specific thresholds are rarely known (Homan, et al., 2004). In addition, changes in 
critical threshold values in neutral models may reflect significant changes in landscape 
function and integrity or may erroneously mask or create change when none exists 
(Turner et al, 1989). Therefore, statistical methods used to define such thresholds need to 
be explored. One oft cited number for spanning cluster formation is a critical threshold 
value of p (pc) 0.5928. This critical p represents the scenario where 59.28% of an extent 
is occupied by a single common value. This might be a forest cover in a single landscape 
for example. However, as demonstrated here, this number represents confidence in a 
distribution of spanning cluster probabilities and not an absolute. Thus, this paper 
reproduces historical percolation studies, which tested the influence of neighborhood 
configuration on spanning cluster creation. This study advances percolation theory 
specifically exploring threshold sensitivity with respect to changes in extent, grain, 
neighborhood configuration, and origin on spanning cluster generation. We hypothesize 
that all parameters are important, each with its own sensitivity as p approaches a critical 
threshold. This research is broadly applicable and also generalizable. In particular, this 
research demonstrates the significant influence that small changes in model parameters 
near a critical threshold may result in disproportionately large changes in degrees of 
landscape fragmentation, connectivity and other measurable, comparable characteristics. 
 
2. Methods 
The effects of changes in extent, grain, neighborhood configuration, and origin were 
tested with pseudo-random neutral model based data. Analyses were performed to test 
whether critical thresholds exist where sudden changes in landscape patterns might occur 
due to variations in exogenous experimental parameters. Thus, spanning cluster dynamics 
were characterized based on critical thresholds and changes in the basic parameters of 
spanning cluster calculations. Random neutral landscapes and the examination of changes 
in extent, grain, neighborhood configuration, and origin with different values of p were 
created with a series of programs developed using the Interactive Data Language (IDL) 
software. Next, critical threshold values where spanning cluster formation occurs were 
investigated. Fifty realizations were generated for each experimental parameter. Every 
modified landscape used a new neutral model. Statistical tests were used to test the 
observed frequencies and the expected values and to identify critical threshold values.  
 
2.1 Interactive Data Language (IDL) program code  
 
2.1.1 Extent 
;Test the spanning cluster has Pcrit of 0.5928 
;Change extent 
 
pro changeextent 



simu = 50 ;the number of simulation 
ptest = [0.5928] ;1) change the tested pcrit value 
n = N_ELEMENTS(ptest) 
arr_judge = BYTARR(simu,n) ;judge results (0=not percorate, 1=percorate) 
FOR i=0,n-1 DO BEGIN 
FOR j=0,simu-1,1 DO BEGIN 

;change extent here 
extent = 5000 
arrayu = randomu(s, extent, extent) 
ne_array = arrayu LE ptest[i] 
ne_clump = LABEL_REGION(ne_array, /ulong ) 
;find the largest patch index(max_index) 
histo = histogram(ne_clump) 
max_area = max(histo[1:*]) 
max_index = where(histo EQ max_area) 
;print,'largest patch area is:', max_area 
;print,'largest patch index is:', max_index 
;convert to the binary data (binary) (non-lagest patch = 0) 
new_index = where(ne_clump NE max_index[0]) 
;ERROR MESSAGE:When the extent > 10000 
;"% Unable to allocate memory: to make array" 
binary = ne_clump 
binary[new_index] = 0 
;print, binary 
;3) test the percolation! 
c_left = max(binary[1,*]) ;indicates all elements in the second column 
c_right = max(binary[5000-2,*]) 
r_left = max(binary[*,1]) ;indicates all elements in the second row 
r_right = max(binary[*,5000-2]) 
IF ((c_left*c_right) EQ 0) THEN c=0 ELSE c=1 
IF ((r_left*r_right) EQ 0) THEN r=0 ELSE r=1 
IF (c EQ 0) AND (r EQ 0) THEN judge=0 ELSE judge=1 
arr_judge[j,i]=judge 

ENDFOR 
print,'Pcrit judge result of ' , ptest[i], ' is:',arr_judge[*,i] 

ENDFOR 
;the total number of percolated image within the 50 times simulation 

vec_total = MAKE_ARRAY(n,/INTEGER) 
vec_total = total(arr_judge,1) ;sum each of the rows 
print,'total number of percolated image is:', vec_total 

end 
 
2.1.2 Grain 
;Test the spanning cluster has Pcrit of 0.5928 
;Change grain size 
 



pro changegrain 
simu = 50 ;the number of simulation 
ptest = [0.5928] ;1) change the tested pcrit value 
n = N_ELEMENTS(ptest) 
arr_judge = BYTARR(simu,n) ;judge results (0=not percorate, 1=percorate) 
FOR i=0,n-1 DO BEGIN 
FOR j=0,simu-1,1 DO BEGIN 

;create the clump image(ne_clump) 
extent = 5000 
arrayu = randomu(s, extent, extent) 
;2) change grain here 
new = congrid(arrayu, 1000, 1000, /interp) 
ne_array = new LE ptest[i] 
ne_clump = LABEL_REGION(ne_array, /ulong ) 
;find the largest patch index(max_index) 
histo = histogram(ne_clump) 
max_area = max(histo[1:*]) 
max_index = where(histo EQ max_area) 
;print,'largest patch area is:', max_area 
;print,'largest patch index is:', max_index 
;convert to the binary data (binary) (non-lagest patch = 0) 
new_index = where(ne_clump NE max_index[0]) 
;ERROR MESSAGE:When the extent > 10000 
;"% Unable to allocate memory: to make array" 
binary = ne_clump 
binary[new_index] = 0 
;print, binary 
;3) test the percolation! 
c_left = max(binary[1,*]) ;indicates all elements in the second column 
c_right = max(binary[1000-2,*]) 
r_left = max(binary[*,1]) ;indicates all elements in the second row 
r_right = max(binary[*,1000-2]) 
IF ((c_left*c_right) EQ 0) THEN c=0 ELSE c=1 
IF ((r_left*r_right) EQ 0) THEN r=0 ELSE r=1 
IF (c EQ 0) AND (r EQ 0) THEN judge=0 ELSE judge=1 
arr_judge[j,i]=judge 

ENDFOR 
print,'Pcrit judge result of ' , ptest[i], ' is:',arr_judge[*,i] 

ENDFOR 
;the total number of percolated image within the 50 times simulation 

vec_total = MAKE_ARRAY(n,/INTEGER) 
vec_total = total(arr_judge,1) ;sum each of the rows 
print,'total number of percolated image is:', vec_total 

end 
 
 



2.1.3 Change neighborhood configuration 
;Test the spanning cluster has Pcrit of 0.5928 
;Change neighborhood configuration 
 
pro changeneighbor 
simu = 50 ;the number of simulation 
ptest = [0.5928] ;1) change the tested pcrit value 
n = N_ELEMENTS(ptest) 
arr_judge = BYTARR(simu,n) ;judge results (0=not percorate, 1=percorate) 
FOR i=0,n-1 DO BEGIN 
FOR j=0,simu-1,1 DO BEGIN 

extent = 1000 
arrayu = randomu(s, extent, extent) 
ne_array = arrayu LE ptest[i] 
;change neighborhood configuration here 
ne_clump = LABEL_REGION(ne_array, /all_neighbors, /ulong ) 
;find the largest patch index(max_index) 
histo = histogram(ne_clump) 
max_area = max(histo[1:*]) 
max_index = where(histo EQ max_area) 
;print,'largest patch area is:', max_area 
;print,'largest patch index is:', max_index 
;convert to the binary data (binary) (non-lagest patch = 0) 
new_index = where(ne_clump NE max_index[0]) 
;ERROR MESSAGE:When the extent > 10000 
;"% Unable to allocate memory: to make array" 
binary = ne_clump 
binary[new_index] = 0 
;print, binary 
;3) test the percolation! 
c_left = max(binary[1,*]) ;indicates all elements in the second column 
c_right = max(binary[1000-2,*]) 
r_left = max(binary[*,1]) ;indicates all elements in the second row 
r_right = max(binary[*,1000-2]) 
IF ((c_left*c_right) EQ 0) THEN c=0 ELSE c=1 
IF ((r_left*r_right) EQ 0) THEN r=0 ELSE r=1 
IF (c EQ 0) AND (r EQ 0) THEN judge=0 ELSE judge=1 
arr_judge[j,i]=judge 

ENDFOR 
print,'Pcrit judge result of ' , ptest[i], ' is:',arr_judge[*,i] 

ENDFOR 
;the total number of percolated image within the 50 times simulation 

vec_total = MAKE_ARRAY(n,/INTEGER) 
vec_total = total(arr_judge,1) ;sum each of the rows 
print,'total number of percolated image is:', vec_total 

end 



2.1.4 Origin 
;Test the spanning cluster has Pcrit of 0.5928 
;Change the Origin 
 
pro changeorigin 
simu = 50 ;the number of simulation 
ptest = [0.5928] ;1) change the tested pcrit value 
n = N_ELEMENTS(ptest) 
arr_judge = BYTARR(simu,n) ;judge results (0=not percorate, 1=percorate) 
FOR i=0,n-1 DO BEGIN 
FOR j=0,simu-1,1 DO BEGIN 

;create the clump image(ne_clump) 
extent = 100 
arrayu = randomu(s, extent, extent) 
ne_array = arrayu LE ptest[i] 
ne_clump = LABEL_REGION(ne_array, /ulong ) 
b = make_array(200, 200) 
b[100,100] = ne_clump 
tvscl, b 
;find the largest patch index(max_index) 
histo = histogram(b) 
max_area = max(histo[1:*]) 
max_index = where(histo EQ max_area) 
;print,'largest patch area is:', max_area 
;print,'largest patch index is:', max_index 
;convert to the binary data (binary) (non-lagest patch = 0) 
new_index = where(b NE max_index[0]) 
;ERROR MESSAGE:When the extent > 10000 
;"% Unable to allocate memory: to make array" 
;3) test the percolation! 
c_left = max(binary[*,101]) ;indicates all elements in the second column 
c_right = max(binary[*,200-2]) 
r_left = max(binary[101,*]) ;indicates all elements in the second row 
r_right = max(binary[200-2,*]) 
IF ((c_left*c_right) EQ 0) THEN c=0 ELSE c=1 
IF ((r_left*r_right) EQ 0) THEN r=0 ELSE r=1 
IF (c EQ 0) AND (r EQ 0) THEN judge=0 ELSE judge=1 
arr_judge[j,i]=judge 

ENDFOR 
print,'Pcrit judge result of ' , ptest[i], ' is:',arr_judge[*,i] 

ENDFOR 
;the total number of percolated image within the 50 times simulation 

vec_total = MAKE_ARRAY(n,/INTEGER) 
vec_total = total(arr_judge,1) ;sum each of the rows 
print,'total number of percolated image is:', vec_total 

end 



2.2 Extent, Grain, Neighborhood configuration, and Origin on spanning cluster 
generation 
The different extent sizes: 10, 50, 100, 500, 1000, were independently tested for 50 
realizations. The 4-neighborhood structure was used to label regions. Grain remained 
constant throughout the process. Probability values from 0.2 to 0.9 where spanning 
cluster formation occurs were investigated. Next, random neutral landscapes were created 
with different grain sizes. Grain size of 1*1 unit was created with an extent of 5000 * 
5000. The extent remained constant throughout the process. The grain size was adjusted 
by using the IDL CONGRID command. Pixels were morphed using adjustments of 2*2, 
5*5, 10*10, and 50*50. 
 
To test the effects of neighborhood structure, a data set with an extent of 1000 * 1000 
was created. Different neighborhood were modeled using the LABEL_REGION function 
from IDL to consecutively label all members of the set of non-zero pixels within the 
neighborhood around the pixel under examination with 4 and 8 neighborhood 
configurations. To test for origin shifts, a random map structure of 200*200 was created.  
The different of origins, (0,0), (100,0), (0,100), and (100, 100), were tested for common 
spanning cluster generation. Probability values from 0.2 to 0.9 where spanning cluster 
formation occurs were investigated for all the experiments. 
 
The Chi-square tests were used in these experiments to define thresholds. The expected 
values were based on the assumption that all random maps have a spanning cluster. 
The ?2 test first calculates a ?2 statistic and then sums the differences of actual values 
from the expected values. The equation for this function is CHITEST = p( X>?2 ), where:  

 

 

and where:  
Aij = actual frequency in the i-th row, j-th column  
Eij = expected frequency in the i-th row, j-th column  
r = number or rows  
c = number of columns  
CHITEST returns the probability for a ?2 statistic and degrees of freedom, df, where df = 
(r - 1)(c - 1).  
 
3. Results and Discussion 
 
3.1 Extent and spanning cluster generation 
Table 1 illustrates that when the extent equal to 1000*1000 and 500*500, the probability 
0.59 gave the Chi-square result more than 0.95. The number of spanning clusters 
generated was not significantly different from the expected result at the alpha 0.05. This 
can be interpreted that at least 95 percent that the spanning clusters will occur in random 
maps of probability 0.59.   The random maps of probability of 0.6 or greater all produced 



spanning clusters with all 50 realizations.  For the extent 100*100, the Chi-square result 
was more than 0.95 when probability of neutral model was equal or greater than 0.58.  
Notably, as the extent decreased, the critical probability value of the random map 
creating a spanning cluster also decreased.  
 
The hypothesized critical point should be the probability where the spanning cluster 
always manifests. However, as shown in Table 1, the critical point can be at P = 0.59 or 
0.6 for the extent 1000*1000 or 0.55 for the extent 10*10 depending on definition of the 
critical point. The results demonstrate that the critical threshold is sensitive to changes in 
extent. 
 

Table 1: The number of the occurrence of spanning clusters and the results from Chi- 
square test with the given probability when changing extent. 

 
Probability  Extent = 

1000*1000 
# Spanning 
cluster/Chi-
sq. prob. 
 

Extent = 
500*500 
# Spanning 
cluster/Chi-
sq. prob. 

Extent = 
100*100 
# Spanning 
cluster/Chi-
sq. prob. 

Extent = 
50*50 
# Spanning 
cluster/Chi-
sq. prob. 

Extent = 
10*10 
# Spanning 
cluster/Chi-
sq. prob. 

0.2 0 0.433 0 0.433 0 0.433 0 0.433 0 0.433 
0.3 0 0.433 0 0.433 0 0.433 0 0.433 1 0.473 
0.4 0 0.433 0 0.433 0 0.433 0 0.433 6 0.676 
0.5 0 0.433 0 0.433 0 0.433 0 0.433 13 0.917 
0.55 0 0.433 0 0.433 0 0.433 7 0.714 24 0.997 
0.56 0 0.433 0 0.433 3 0.555 11 0.873 28 1.000 
0.57 0 0.433 0 0.433 9 0.785 19 0.979 30 1.000 
0.575 0 0.433 0 0.433 12 0.873 22 0.993 30 1.000 
0.58 0 0.433 3 0.555 20 0.985 21 0.990 32 1.000 
0.585 0 0.433 8 0.750 26 0.999 25 0.998 33 1.000 
0.59 17 0.961 23 0.996 31 1.000 26 0.999 34 1.000 
0.591 17 0.961 27 0.999 32 1.000 28 1.000 34 1.000 
0.5928 31 0.999 34 1.000 34 1.000 29 1.000 33 1.000 
0.594 36 0.999 38 1.000 35 1.000 31 1.000 32 1.000 

0.595 45 1.000 39 1.000 34 1.000 32 1.000 33 1.000 
0.60 50 1.000 50 1.000 41 1.000 33 1.000 35 1.000 
0.61 50 1.000 50 1.000 47 1.000 38 1.000 36 1.000 
0.62 50 1.000 50 1.000 50 1.000 46 1.000 40 1.000 
0.65 50 1.000 50 1.000 50 1.000 49 1.000 43 1.000 
0.7 50 1.000 50 1.000 50 1.000 50 1.000 49 1.000 
0.9 50 1.000 50 1.000 50 1.000 50 1.000 50 1.000 

 
3.2 Grain and spanning cluster generation 
Grain size of 1*1 unit was created with an extent of 5000 * 5000 units.  The extent was 
the same through the process. Table 2 shows the results when the original grid was 
rescaled to 2*2, 5*5, 10*10, and 50*50 of the original.  The Chi-square result for grain 



1*1 shifted from 0.5 to 1 with the probability map equal to 0.5928.  The result also 
indicated the same critical point for grain 2*2.  For grain 5*5, the critical pointed shifted 
to the probability map of 0.591.  While grain size equal to 50*50, the Chi-square shows 
that the critical point shifted to 0.58.  These indicated that when the grain size increased 
the critical value would be less than 0.5928.  The results imply that the critical threshold 
is sensitive to changes in grain size. 
 

Table 2: The number of the occurrence of spanning clusters and the results from Chi- 
square test with the given probability when changing grain. 

 
Probability Grain = 1*1  

# Spanning 
cluster/Chi-
sq. prob. 

Grain = 2*2  
# Spanning 
cluster/Chi-
sq. prob. 

Grain =5*5  
# Spanning 
cluster/Chi-
sq. prob. 

Grain = 
10*10  
# Spanning 
cluster/Chi-
sq. prob. 

Grain = 
50*50  
# Spanning 
cluster/Chi-
sq. prob. 

0.2 0 0.433 0 0.433 0 0.433 0 0.433 0 0.433 
0.3 0 0.433 0 0.433 0 0.433 0 0.433 0 0.433 
0.4 0 0.433 0 0.433 0 0.433 0 0.433 0 0.433 
0.5 0 0.433 0 0.433 0 0.433 0 0.433 0 0.433 
0.55 0 0.433 0 0.433 0 0.433 0 0.433 1 0.473 
0.56 0 0.433 0 0.433 0 0.433 0 0.433 4 0.595 
0.57 0 0.433 0 0.433 0 0.433 0 0.433 9 0.785 
0.575 0 0.433 0 0.433 0 0.433 0 0.433 12 0.873 
0.58 0 0.433 0 0.433 0 0.433 0 0.433 21 0.990 
0.585 0 0.433 0 0.433 0 0.433 8 0.750 27 0.999 
0.59 1 0.473 2 0.473 14 0.917 23 0.996 33 1.000 
0.591 2 0.514 9 0.785 17 0.961 29 1.000 34 1.000 
0.5928 33 1.000 31 1.000 31 1.000 37 1.000 35 1.000 
0.594 49 1.000 44 1.000 41 1.000 40 1.000 37 1.000 

0.595 50 1.000 50 1.000 45 1.000 45 1.000 38 1.000 
0.60 50 1.000 50 1.000 50 1.000 49 1.000 38 1.000 
0.61 50 1.000 50 1.000 50 1.000 50 1.000 49 1.000 
0.62 50 1.000 50 1.000 50 1.000 50 1.000 50 1.000 
0.65 50 1.000 50 1.000 50 1.000 50 1.000 50 1.000 
0.7 50 1.000 50 1.000 50 1.000 50 1.000 50 1.000 
0.9 50 1.000 50 1.000 50 1.000 50 1.000 50 1.000 

 
 
3.3 Neighborhood configuration and spanning cluster generation 
For the neighborhood configuration experiments, the extent of 1000*1000 was held 
constant. The results show that the spanning cluster occurred more frequently with the 
lower probability of neutral map for 8-neighbor than 4-neighbor. This is because the 
diagonal neighbors in 8-neighborhood structures will be counted for cluster membership.  
Obviously, the 8-neighbor structures will form cluster more readily than the 4-neighbor 
structure at a given p, and form a spanning cluster at a lower p.  The critical threshold for 
8-neighborhood configuration was 0.405. The chi-square test gave the Chi-square 



probability of 0.990. The number of spanning clusters per 50 run tests was not 
significantly different from the expected result at the alpha 0.05. This can be interpreted 
that 99 percent that the spanning clusters will occur in random maps of probability 0.405.  
The results demonstrate that the critical threshold is sensitive to changes in neighborhood 
configuration. 
 
Table 3: The number of spanning clusters and the Chi-square results given probability p 

when changing Neighborhood configuration. 
 

Probability 4-neighbors  
# Spanning 
cluster/Chi-
sq. prob. 

8-neighbors  
# Spanning 
cluster/Chi-
sq. prob. 

0.2 0 0.433 0 0.433 
0.3 0 0.433 0 0.433 
0.4 0 0.433 3 0.555 
0.405 0 0.433 21 0.990 
0.4075 0 0.433 37 1.000 
0.40875 0 0.433 42 1.000 
0.41 0 0.433 46 1.000 
0.410625 0 0.433 47 1.000 
0.41125 0 0.433 49 1.000 
0.4125 0 0.433 50 1.000 
0.415 0 0.433 50 1.000 
0.42 0 0.433 50 1.000 
0.5 0 0.433 50 1.000 
0.59 17 0.961 50 1.000 
0.591 17 0.961 50 1.000 
0.5928 31 0.999 50 1.000 
0.594 36 0.999 50 1.000 
0.595 45 1.000 50 1.000 
0.60 50 1.000 50 1.000 
0.9 50 1.000 50 1.000 

 
3.4 Origin and spanning cluster generation  
The basic extent in this model was 200*200 with an internal adjusting struc ture of 
100*100.  The results show that the number of spanning clusters generated is very similar 
to others when changing the origin.  The critical thresholds were between 0.58 and 0.585.  
The Chi-square result shows that 95 percent the spanning cluster will occur at the alpha 
0.05.  The results imply that the critical threshold is not sensitive to changes in origin. 
This result is as expected given a random neutral landscape as input. 

 
 
 



Table 4: The number of the occurrence of spanning clusters and the results from Chi 
square test with the given probability when changing origin. 

 
Probability Origin=(0,0) 

#Spanning 
cluster/Chi-
sq. prob. 

Origin=(100,0) 
#Spanning 
cluster/Chi-sq. 
prob. 

Origin=(0,100) 
#Spanning 
cluster/Chi-sq. 
prob. 

origin=(100,100) 
#Spanning 
cluster/Chi-sq. 
prob. 

0.2 0 0.433 0 0.433 0 0.433 0 0.433 

0.3 0 0.433 0 0.433 0 0.433 0 0.433 
0.4 0 0.433 0 0.433 0 0.433 0 0.433 
0.5 0 0.433 0 0.433 0 0.433 0 0.433 
0.55 0 0.433 0 0.433 0 0.433 0 0.433 
0.56 3 0.555 5 0.636 5 0.636 1 0.473 
0.57 9 0.785 10 0.817 8 0.750 5 0.636 
0.575 12 0.873 15 0.934 14 0.917 12 0.873 
0.58 20 0.985 15 0.934 19 0.979 21 0.990 
0.585 26 0.999 21 0.990 21 0.990 21 0.990 
0.59 31 1.000 26 0.999 26 0.999 28 1.000 
0.591 32 1.000 29 1.000 29 1.000 30 1.000 
0.5928 34 1.000 34 1.000 33 1.000 32 1.000 
0.594 35 1.000 34 1.000 33 1.000 34 1.000 
0.595 34 1.000 34 1.000 34 1.000 35 1.000 
0.60 41 1.000 39 1.000 38 1.000 37 1.000 
0.61 47 1.000 45 1.000 46 1.000 46 1.000 

0.62 50 1.000 50 1.000 50 1.000 50 1.000 
0.65 50 1.000 50 1.000 50 1.000 50 1.000 
0.7 50 1.000 50 1.000 50 1.000 50 1.000 
0.9 50 1.000 50 1.000 50 1.000 50 1.000 

 
4. Conclusion 
It is common in landscape ecology research to represent spatial data with a rectangular 
lattice composed of a large number of equal-sized grid cells. These geographically 
referenced, topologically constrained grid cells are often used with different extents, 
grain sizes, neighborhood configurations, and origins. To advance our understanding in 
spatial patterns and processes of ecosystems, therefore, it is critical to understand how 
changing these spatial parameters affect the results of spatial analysis of landscape 
patterns and influence hypothesis generating activities. This research was specifically 
motivated by scientific literature setting spanning cluster thresholds that simply do not 
hold for all circumstances or parameter adjustments. Consequently, this research 
specifically investigated landscape sensitivity with respect to changes in extent, grain, 
neighborhood configuration, and origin on spanning cluster generation. Focusing on 
neutral landscape models, changing extent, grain, or neighborhood methods does affect 
critical thresholds. In contrast, changing origins does not affect critical thresholds. 
Consider, however, that origin shifts are frequently used with autocorrelated, real world 



spatial data, and it is likely that such shifts would also result in a distribution of critical 
thresholds. 
 
This research demonstrates the significant influence that small changes in model 
parameters near a critical threshold may result in disproportionately large changes in 
degrees of landscape connectivity as measured by spanning cluster formation. Thus, the 
results of all spatial analyses employing pattern metrics, generally, and percolation, 
specifically, should be presented with explicit specification of the extent, grain, and 
neighborhood configuration on which the study is conducted. Other measurable, 
comparable characteristics, though not explicitly tested here are quite likely to be 
influenced equally given the colinearity of most pattern metrics. In general, landscape 
pattern analysis of any metric set at a specific grain, extent, neighborhood or origin will 
provide useful information, but examinations that include multiple metrics across a range 
of lattice configurations are most desirable. 
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