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Abstract 
Managing large volume points clouds data generated from laser scanner is a 
challenging problem in Geographic Information System (GIS) and spatial 
database. Based on analyzing the pros and cons of the existing management 
methods, this paper presents a method to manage lidar data in databases 
based on the Hilbert space-filling curve. Each lidar data point (X, Y, and Z) is 
encoded (indexed) by the 3-D Hilbert curve. Data points are organized 
together according to their Hilbert codes. The initial encoding level of Hilbert 
curve is determined by the total number of points and the target record size. 
The data points are first encoded with this initial level Hilbert curve. After 
refining and combining processes, the data volume of each group is 
controlled under the desired size. One record in database represents one data 
group; the binary blob of the record contains all the data points in one group. 
Details on constructing 3-D Hilbert curve are discussed. Typical query 
process “window query” is implemented. Reported in this paper are results 
based on synthetic and real lidar data collected from ground tripod lidar and 
airborne lidar equipments.  

 

1. Introduction 
LIDAR (Light Detection and Ranging), including both airborne and ground-based laser 
scanning, is currently a widely used remote sensing technology for fast acquisition of 
precise and reliable 3-D spatial information. Point clouds generated from laser scanner 
have been used in many different geo-information areas, such as digital terrain model 
generation, 3-D modeling of urban environment and landscape analysis (Ackermann, 
1999; Palmer and Shan, 2002).  
 
Point clouds data can be represented as multi-dimensional arrays such as 3-D (Cartesian 
coordinates: X, Y, Z) and 4-D (Cartesian coordinates and Intensity of returned pulse). 
Although existing CAD and GIS software can directly import these arrays into main 
memory as point features, handling millions of data points usually exceeds their 
computing capacity. The points cloud dataset requires a significant storage capacity, and 
the loading time of the dataset from files or databases can be unbearable. It is crucial to 
provide advanced managing and query functions in lidar data handling such that the 
interest subset of data can be rapidly located and read from the secondary storage. Present 
database management (DBMS) systems do not provide a simple way to manipulate multi-
dimensional arrays; the operations on arrays are very limited and not optimized (Marathe 
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and Salem, 2002). Efficient organization, storage and retrieval of lidar data have posed a 
challenging problem for many practical applications. 
    
A common practice to manage the lidar data is to partition the space the lidar data resides 
into regular tiles (e.g., 1 mile by 1 mile) or grids (such as orthophoto grid or township 
grid) and then store the lidar data in one tile/grid as one single file in ASCII or binary 
format. The large volume of dataset is divided into separated files with a reasonable size. 
The grid itself can be stored as shapefile and the links to the external lidar data files are 
stored in the corresponding attribute table (Merrick, 2004; NCFMP, 2004). However, it is 
very difficult to perform efficient queries and retrievals. For example, if one wants to 
access the data points with their elevations in certain range, all the data in the query area 
has to be downloaded from data sever then imported to CAD/GIS software to conduct the 
query to find the desired data points. For large working areas, the loading time can take 
up to tens of minutes. As an alternative, the lidar data can be directly stored in databases; 
each data point is inserted into database as a single record. Since the data is stored and 
accessed in single point level, it is easy to perform the query and analysis on the data 
sever, and only the interest data points are returned to users. This method works well for 
small dataset up to several millions of points. The downside of this method is that high 
investment on software and hardware is needed to effectively manage a large database for 
a lidar project. 
  
To overcome the shortcomings of the above two methods, we propose to apply the space-
filling curves to partition the lidar dataset. The partitioned dataset will be stored in a 
spatially indexed relational database. First, the space in which lidar data is embedded is 
partitioned into a number of 3-D dimensional cells. The extension of the 3-D cells varies 
according to the lidar data density, such that the number of lidar points in each cell is as 
even as possible or closes to a predefined target value. Next, the 3-D cells are ordered in 
space based on the principle of Hilbert space-filling curve. In this way, cells with 
adjacent sequential numbers (Hilbert codes) will also be adjacent in space. The lidar 
points within the same 3-D cell are then stored as a binary blob (Binary Large Object), 
the data (blob and Hilbert code) of 3-D cells are input into a database table in the order of 
the Hilbert codes. For spatial query, a hierarchical strategy is applied that initially 
determines the large cells where lidar points may possibly reside and continues to reach 
smaller cells until all qualified data points are found. Under this management strategy, 
the balance between storage requirements and fast-query needs is achieved.  
 
The rest of this paper is organized as follows. Firstly, the related studies are reviewed in 
Section 2. Section 3 introduces Hilbert space-filling curve and its representation based on 
permutation rules. Main topic of this paper, indexing and querying lidar data with Hilbert 
curve, is presented in section 4. Section 5 presents the results from current 
implementation, followed by conclusion remarks in Section 6. Details on constructing 3-
D Hilbert curve are listed as Appendix. 

2. Related Works 
Spatial data, including lidar data, are usually organized as 2-D, 3-D or even higher 
dimensional arrays. To store the high dimensional data in 1-D media, such as harddisk, 
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the mapping between higher dimensional space and 1-D space has to be developed. For 
spatial data, there is no perfect mapping such that any two spatially adjacent objects are 
also adjacent to each other in 1-D storage media (Gaede and Gunther, 1998). Many 
hierarchical spatial data structures (also called multidimensional access methods) have 
been developed for organizing and representing spatial data in GIS and spatial databases. 
All these methods fall in two categories: point access methods and spatial access methods. 
Point access methods only organize spatial points. It first partitions the space into 
different areas according to certain criteria, and then groups the points by areas. This 
category is also called space-partition based access methods. Spatial access methods are 
spatial object (such as points, lines and polygons) based approach. Most methods in this  
category use MBB (minimum bounding box) of the objects, and are thus referred as 
rectangle access methods (Gaede and Gunther, 1998). There is no single optimal spatial 
data structure that is suitable for all kinds of spatial data. Each method has its strengths 
and limitations. In GIS and spatial databases related applications, Quadtree (Octree in 3-
D case) (Samet, 1989) and R tree (also several variations, such as R+ tree, R* tree) (R: 
Guttman, 1984; R+: Sellis, et al., 1987; R*: Beckmann, et al., 1990) are two most widely 
used methods. The performance of these two methods has been compared in Oracle 
database using GIS data (Kothuri, et al., 2002): for point data, Quadtrees are faster in 
index creation/update and has the storage requirements nearly the same as R-trees; R-
trees are slower than Quadtrees for certain types of spatial queries on point layers. Some 
preliminary studies (Brinkhoff, 2004; Wang and Tseng, 2004) show that spatial access 
methods have the potential use for organizing lidar data and performing feature extraction.  
 
For lidar dataset, no matter which spatial data structure is applied, the dataset has to be 
divided into different groups by certain space-partition mechanism. An Octree-like space-
partition method based on 3-D Hilbert space filling curve is proposed in this paper.  

3. Hilbert Space-Filling Curve 
Space-filling curves (Sagan, 1994) map points in N-dimensional space into a 1-D linear 
order. The curve visits each point in space only one time in a certain order - usually 
points that are close on the curve are close in space. There is no perfect mapping to 
preserve global spatial proximity. Space-filling curves preserve spatial proximity at local 
level to some extent; the closer two object in space, the higher possibility that they are 
close together in the linear order defined by space-filling curves. Because of the 
characteristics of mapping between one and N-dimensions and the distance-preserving 
(or clustering) property, the space-filling curves are especially useful in applications that 
involve the storage and retrieval of multi-dimensional data with 1-D media (e.g., hard 
disk) (Gaede and Gunther, 1998).  
 
A space-filling curve can be used with a space partition method. A high-dimensional 
space can be divided into different grid cells, which can be in turn further divided into 
smaller cells until the cell size or the number of interest objects in the cell is small 
enough. The level of such partition depends on the smallest cell size and the number of 
grid nodes in space that space-filling curve can pass through. Each cell is labeled by the 
unique number (called code) that defines cell’s position in the order of space-filling curve. 
The way of labeling determines the order in which the cells are stored in 1-D media. 
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There are many different types of space-
filling curves, such as Hilbert, Peano (N-
ordering curve), Gray, Sweep, C-Scan 
and Diagonal etc (Mokbel, et al., 2003). 
The 2-D Hilbert curve and Peano curve 
are shown in Figure 1. To evaluate the 
clustering abilities of space-filling 
curves, one simple instinct way is to 
identify the jump segments (two 
consecutive points are not in the von 
Neumann neighborhood of each other); 
the lack of jump segments is usually a 
good indication for better clustering. We 
can see that jump segments exist in 
Peano curve. Peano curve separates the data space into more small pieces (clusters) than 
Hilbert curve. Both mathematical analysis and practical applications suggest that Hilbert 
curve has best clustering ability and performance in data retrieval and response time 
among all kinds of space-filling curves. (Faloutsos and Roseman, 1989; Lawder, 1999; 
Moon, et al., 2001; Mokbel, et al., 2003). However, due to the simplicity of its mapping 
functions, Peano curve is also widely used in spatial data management applications 
(Pascucci and Frank, 2001). 
 
Based on the above observations, 3-D Hilbert curve is used to order the partition cells and 
manage the lidar data (X, Y, Z or Northing, Easting, Elevation) in this study. The 
examples of 3-D Hilbert curves from level 1 to level 3 are shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 

Figure 2 . 3-D Hilbert space-filling curve (Level 1, 2, 3 from left to right) 

3.1 Generation of Hilbert curves 
Due to the self-similarity property of the Hilbert curves, higher level Hilbert curve can be 
generated recursively from the lower level curve. The generation can be done with a set 
of recursive rules. Many researchers have studied recursive generation of Hilbert curve in 
2-D and 3-D space, different methods, such as recursion (Breinholt and Schierz, 1998), 
vertex labeling (Bartholdi and Goldsman, 2001), L systems (Alfonseca and Ortega, 1996), 
tensor product (Lin, et al., 2003) and table driven method (Jin and Mellor-Crummey, 
2005) have been developed. For space higher than three dimensions, it is more difficult to 

Figure 1.  2-D Peano (top) and  
Hilbert (bottom) curves 
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find rules to generate Hilbert curves. Non-recursive methods, usually based on byte-
oriented operations, have been developed for generating Hilbert curve in higher 
dimensional space (Butz, 1971; Lawder, 2000). Although technically they can be used to 
generate Hilbert curves in any dimensions, these non-recursive methods are too 
complicated and not as much efficient as recursive methods in lower dimensional space. 
There is only one unique form of Hilbert curve in 2-D space, however, there are many 
different ways to define Hilbert curve in three or higher dimensional space (Sagan, 1993). 
According to Alber and Niedermeier (2000), there are exactly 1536 structurally different 
CHPs (Class with Hilbert Property) in 3-D space.    
 
Since lidar data can be represented in 3-D or 4-D arrays, the recursive generation 
methods is used in this research. After carefully studying all these different methods, we 
summarize that recursive generation procedures can be expressed in the following way: a 
d-dimension cube is divided equally into 2d sub-cubes; the first level Hilbert curve (Hd

1) 
is generated by connecting the center of each sub-cube in the vertex labeling order. The 
set of permutation rules will partition a Hd

k-1 level cube into 2d Hd
k cubes. So a d-

dimension Hilbert curve can be recorded as the ordered 2d vertices and 2d permutation 
rules. The permutation rule takes the following basic form: 
 

'
11 12 1 11 12

'
21 22 2 22 22

'
2 1 2 2 2 2 2 22

...

...1 1
... ... ... ... ... ...... 2 2

...

d

d

d d d d d dd

a a a V bV
a a a V bV

a a a V bV

      
      
      = +      
                 

 (1) 

 
where [V] and [V’] are the ordered vertices of a d-dimension cube and its sub-cube, 
respectively, [a] is the rotation/reflection matrix, [b] is the shifting vector, and the scale 
factor is 0.5. The rules can be written down in 2-D by direct observing the geometry 
formation of Hilbert curve. We first apply this method to 2-D Hilbert curve, and then 
provide one example rule for 3-D Hilbert curve. All 8 permutations rules in 3-D case are 
listed in Appendix. Figure 3 shows the situation of H2

1 (the first level curve in 2-D). 
 
 
 
 
 
 
 
 
 

Figure 3. Recursive generation rules for 2-D Hilbert curve 
 
For sub-cell 2 and 3, vertex 2 and 3 are connection points for constructing H2

1 from 
two 1

1H , the edge 2à3 are parallel to the axis 2, the rotation/reflection matrix for both 
sub-cell are identity matrix. The permutation rules for these two sub-cells are: 
 

a

b c

d a

b c

d

a’

c’

d’

b’

a’

c’

d’

b’

a’

c’ d’

b’

a’

c’d’

b’

2
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32

1 4

3A
xis 1

Axis 2



 6 

' 1 0 0 0
' 0 1 0 01 1subcell 2: 
' 0 0 1 02 2
' 0 0 0 1

a a b
b b b

c c b
d d b

       
       
       = +
       
       
       

 (2) 

' 1 0 0 0
' 0 1 0 01 1subcell 3: 
' 0 0 1 02 2
' 0 0 0 1

a a c
b b c

c c c
d d c

       
       
       = +
       
       
       

 (3) 

 
For the sub-cell 1, it is generated by the reflection along the vertex a and its diagonal 
vertex c, these two vertices will keep their positions, and the other two vertex b and d on 
the diagonal line which is perpendicular to aàc will exchange their positions. The 
permutation rule for the cell is: 
 

' 1 0 0 0
' 0 0 0 11 1subcell 1: 
' 0 0 1 02 2
' 0 1 0 0

a a a
b b a

c c a
d d a

       
       
       = +
       
       
       

 (4) 

  
In a similar manner, the permutation rule for sub-cell 4 is:  
 

' 0 0 1 0
' 0 1 0 01 1subcell 4: 
' 1 0 0 02 2
' 0 0 0 1

a a d
b b d

c c d
d d d

       
       
       = +
       
       
       

 (5) 

 
In this way we obtain the permutation set for 2-D Hilbert curve.  
 
In 3-D, the cube will be divided into 8 sub-cell recursively and there are 8 permutation 
rules for 3-D Hilbert curve. Figure 4 shows the example of H3

1 and the mapping of the 
first sub-cell (which includes vertex a). The rule for first sub-cell is listed below (see 
Appendix for all 8 rules).  
 

a

b
c

d

e

f
g

h

a’

b’

c’

d’

e’

f’
g’

h’

 
Figure 4. First level 3-D Hilbert curve and mapping of the first sub-cell 
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' 1 0 0 0 0 0 0 0
' 0 0 0 0 0 0 0 1

' 0 0 0 0 1 0 0 0
' 0 0 0 1 0 0 0 01 1

subcell 1: 
' 0 0 1 0 0 0 0 02 2
' 0 0 0 0 0 1 0 0
' 0 0 0 0 0 0 1 0
' 0 1 0 0 0 0 0 0

a a a
b b a

c c a
d d a
e e a

f f a
g g a
h h a

      
      
      
      
      
      = +      
      
     
     
          
      










 
 
  



 
(6) 

3.2 Encoding and Decoding 
The 3-D Hilbert curve maps 3-D points into a 1-D linear order. The sequential number 
(position) of a point on the curve is called Hilbert code. Each Hilbert code has the 
corresponding enclosing cell in 3-D space. Data points are ordered according to the 
sequence in which the curve visits the cells that enclose the data points. Each cell can be 
assigned to base-4 digit ([0-3]) in 2-D and base-8 digit ([0~7]) in 3-D to represent its 
position relative to the parent (next lower level) cell. The 3-D Hilbert code is a string of 
base-8 digits, the length of string equals to the coding level.  
 
The operations of converting between Hilbert code and 3-D coordinates are referred as 
encoding and decoding. Figure 5 shows an example of encoding a point to level 3 in 3-D 
space. 
 
Encoding procedure 

1. Given a point (x,y,z) and the 0-level cube; 
2. Find the closest vertex i among all 8 vertices of the cube; 
3. Set i as Hilbert code for this level; 
4. Apply ith permutation rule to get 8 vertices of the sub-cell which contains the point; 
5. Repeat step 2-4 until desired coding level;  
6. Return Hilbert code string. 

 
 

 
 

Figure 5 . The process of encoding a point to level 3 
Level 1 code: “2”, level 2 code: “2”, level 3 code: “6”, the final code is “226” 

 
Through a decoding process, we can find the enclosing cell of the given Hilbert code. 
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Decoding procedure 

1. Get the 0-level cube; 
2. i = 1;  
3. Pick up the ith digit from Hilbert code string; 
4. Apply ith permutation rule to get the vertices of the sub-cell; 
5. i = i + 1; 
6. Repeat step 3-5 until i > length (code); 
7. Return the vertices of current cell. 

 

4. Indexing and Querying Lidar Data 

4.1 Indexing  
Indexing procedure can be described as a recursive space partition process. We first 
divide the space into cells (small 3-D region) with certain level Hilbert curve. If the 
number of lidar points in a cell is larger than the predefined target value, it will be further 
divided into 8 higher-level sub (smaller) cells (the next higher level in Hilbert curve). 
This process is repeated until no cell contains more than the target number of data points. 
In the next step, the rest of never-be-divided cells are summed up according to the parent 
cell (the next lower level in Hilbert curve). If the total number of data points in cells with 
the same parent is less than the target value, then all these cells are combined into one 
larger cell (parent cell). After these refining and combining processes, the lidar points are 
input into a database with each cell being stored as one record. The data points in the 
same cell are stored in the binary blob of the corresponding record.  

Indexing procedure 
1. Choose initial encoding level; 
2. Encode data points with initial level;  
3. Count number of data points with the same Hilbert code; 
4. Generate the list of Hilbert code for refining process; 
5. Generate the list of Hilbert code for combining process; 
6. Run refining procedure until list from step 4 is empty; 
7. Run combining process until list from step 5 is empty; 
8. Group data by Hilbert code; 
9. Insert grouped data points into database. 

 

The complexity of the algorithm depends on k and n, k is the largest encoding level and n 
is the number of data points, since k << n, the real indexing time is in general 
proportional to the number of data points. The detail of indexing procedure is explained 
as following five steps: initialization, encoding, refinement, combine and input to 
database. 

In the initialization step, we first choose the target size and decide the initial Hilbert curve 
encoding level. The target size is the maximum number of points stored in each record 
for a database. It can be chosen based on hardware performance and Internet speed or the 
size of most frequently queried study area. A target size of several K to several 10K will 
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be a proper choice for most applications.  The initial Hilbert curve is determined by the 
following equation 

 
8int(log / 1.5)NL Pnts Ts= +  (7) 

          
where NL is the initial encoding level, Pnts is the total number of lidar points, Ts is the 
target size. For example, we have 1 million points, and the target size is 2000. If data 
points are evenly distributed in 3-D space, there will be 500 records. A level-3 Hilbert 
curve can pass through 512 (83) cells and therefore is sufficient. However, due to the non-
uniform distribution of the data points, we choose level 4 as initial coding level, since 
level 4 can pass through 4096 (84) cells. Choosing the proper initial encoding level 
according to the distribution of points in 3-D space can reduce the time spent on the 
following refining and combining processes.  
 
In the encoding step, all the data points are encoded into the initial encoding level. It 
should be noted that it is not necessary to encode each lidar point by exactly following 
the procedure described in Section 3.2. The lidar sampling and file are sequential and the 
possibility for one  point to be in the same cell with the previous point is high. Each point 
is therefore compared with its previous point. If they are in the same cell, this point will 
have the same Hilbert code as the previous point; otherwise, it will go through the 
complete encoding procedure. During this process, the number of data points in each cell 
is counted. If this number is larger than the target number, then the Hilbert code of this 
cell is added to the list of cells that need further division or refinement. If the number of 
data points in the cell is less than the target number and none of its adjacent cells is in 
refining list, this cell is added to the candidate list to be combined.  
 

For the cells in the refining list, all the points in a cell are passed into the encoding 
procedure again and encoded into the next higher level. This is equivalent to dividing the 
cell further into 8 sub cells in 3-D space. Then the number of points in each sub-cell is 
counted, if it is higher than the target size, this sub-cell is further divided. Repeat this 
process until all the cells contain points no more than the target size. If initial encoding 
level is too low, most cells need to be further divided into several levels deeper in the 
Hilbert curve. Repeated encoding processes is time consuming for large data set, since 
exacting data points from large arrays is a slow process.   

The combing step is to merge certain cells based on their number of enclosing points. 
After refining process, the 3-D space partition contains cells in different sizes. For the 
cells which are never divided in the refining process, their Hilbert code length is equal to 
the initial encoding level. All these cells will be summed up according to their parent cell. 
Testing if certain cells belong to the same parent is straightforward, for example, cell 
‘0324’ and ‘0325’ are in the same parent cell ‘032’. If the total number is less than the 
target size, the cells are combined into the parent cell, and the Hilbert code of the parent 
cell will be assigned to the points in these cells. If the parent cell contains refined cell, 
then all the sub cells in this parent cell are not combinable. After scanning all the never-
divided cells, the lower level parent cell will be scanned again, until all the cells are not 
combinable. If initial encoding level is too high, each cell is very small and may contain 
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lidar points much less than the target size. As a consequence, most cells need to be 
combined into lower level parent cells. Since there is no encoding process involved, it is 
less time consuming than the refining process.    
 

Figure 6 shows an example of 3-D space grids after each step from a small set of testing 
lidar dataset of tree canopy (see Table 1 in Section 5). For illustration purpose, the range 
of XYZ coordinates have been normalized into (0, 1). From the left to right, Figure 6 
shows the grid state after each step. The initial encoding level is 3; all the cells have the 
same level of codes (Green box represent level 3 cell). After the refining process, some 
cells are coded into level 4 (blue cell). In the combining step, the undivided cells are 
counted; some of them are combined to level 2 cells (Yellow cell). 

 
Figure 6 . The grid state after each step, 1) encoding step, 2) refining step and 3) 

combining step; Yellow box: level 2, Green box: level 3, Blue box: level 4. 
 

The final step is to write the encoded data into a database. Any relational database can be 
used to store lidar data. The basic table structure contains a string column and a binary 
blob column, which are respectively for the Hilbert code and its associated data points. 

4.2 Querying 
  
Among different types of spatial queries, this paper implements the most frequently used 
window (range) query. It is the process to find all the data points inside a given 3-D cube. 
We first encode the 8 vertices of the query region until all of them have different Hilbert 
codes. This means the query region has been divided into 8 cells. Only data cells inside 
these 8 cells need to be considered. The database is then scanned to retrieve the subset of 
data cells. If the cell from the subset is inside the query window, all the data points in the 
cell are selected; if the cell overlaps with the query window, each data point in the cell is 
scanned to decide if it is inside the query window. Since the data points in each cell are 
no more than the target size, it is not a time consuming process to perform this scanning 
process. 
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5. Evaluation 
 
Both indexing and querying procedures are evaluated. The lidar data is stored into 
MySQL database and Microsoft Access. Python is used as the development language. 
Both synthetic and real lidar data are used in our study. Synthetic lidar data is created as 
3-D random points with uniform distribution, while the three sets of real lidar data are 
respectively collected by airborne lidar equipment over the Purdue campus, and by 
ground tripod lidar for two bridges at the interstate highway I-70 in Indianapolis, Indiana. 
Table 1 lists the properties of the test data sets and the time needed for spatial indexing 
and query. The relationship between indexing time and number of data points shows in 
Figure 7. The tests are performed with a Pentium IV 2 GHz desktop with 512M memory. 

 
Table 1. Test lidar sets, encoding results and query performance 

 Synthetic-1 Synthetic-2 Tree Campus Bridge-1 Bridge-2 

Data source. 
Random 
generated 
in Matlab 

Random 
generated in 

Matlab 

Tree 
canopy 

Scan 

Airborne,  
Purdue 
Campus 

I-70 bridge 
Optec, north 

side 

I-70 bridge 
Optec, the 

whole bridge 
Total points 20,000 200,000 4,296 620,738 372,294 1,427,043 
Target points 100 2,000 50 3,000 3,000 10,000 
Initial level 4 4 3 4 3 4 

Refined points 6,422 64,381 1,089 76,451 327,682 326,874 
Combined 

points 2,381 12,332 553 29,041 15,579 74,904 

Indexing time 132 s 323 s 10 s 950 s 750 s 2,800s 
Window query 

time* <1 s <1 s <1 s <3 s <3 s <5 s 

*Window query time is the average time of 100 random queries 

 

0

500

1000

1500

2000

2500

3000

3500

0 200 400 600 800 1000 1200 1400 1600
Points (in thousands)

In
de

xi
ng

 T
im

e 
(in

 s
ec

on
ds

)

Sync1
Sync2
Tree
Campus
Bridge 1
Bridge 2
Trendline

 
Figure 7. Indexing time vs. number of points 
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Figure 8 shows the results of Bridge-1 data set. The distribution of data points is 
extremely non-uniform. After the initial encoding at level 3, 88% of the total points need 
to be refined, the repeated encoding process in refining step slows down the data 
processing greatly, and one way to solve this problem is to increase the initial level. How 
to decide the optimal initial encoding level for the extremely non-uniform data needs to 
be investigated in future study.   

Fi
gure 8. Bridge-1 data set: photo of the bridge, plots of data points and encoding result 

 

The result from campus data set is shown in Figure 9. Compared with Bridge-1 data set, 
the density distribution of campus data set is much more close to uniform. Its indexing 
time would be less than non-uniform distributed Bridge-1 data set if both of them had the 
same number of data points. 

 
Figure 9. Campus data set: data points on XY plane (color represents elevation) , 
encoding result in wire frame and encoding results in box format (color represents 

encoding level)  

6. Conclusions  
 
The goal of this work is to study the theory and methodology to effectively manage large 
volume lidar data in spatial database. Octree partition and the Hilbert space-filling curve 

Lowà High 
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are used for this purpose. The ordinary 2-D Hilbert curve is expanded to a 3-D 
formulation to support true 3-D spatial index and query. It is shown that a 3-D Hilbert 
curve can be generated through a set of matrices by repeatedly applying rotation and 
reflection to a basic matrix. To spatially index the lidar data, the 3-D space is recursively 
partitioned into cells based on octree principle till the number of lidar points in each cell 
is no more than a predefined target value. Lidar points are then written into a relational 
database cell by cell as a blob by following its order on the Hilbert curve. In this way, the 
lidar points are nearly equally distributed among the cells and therefore the record of the 
spatial database can be kept as the same manageable size. Study with two synthetic and 
three real lidar datasets validates the developed theory and methodology. It is shown that 
such indexing is extremely beneficial for 3-D window query. Our experience suggests 
that the distribution of lidar data has great effect on the indexing performance. Difficult 
arises in determining the initial partition level and target size for extremely uneven 
distributed lidar data. Future effort will be focused on further reducing the time needed 
for indexing calculations by optimizing the encoding algorithm. Moreover, the presented 
methodology will be expanded to 4-D to support both location and intensity related query.  

Appendix. Permutation rules for 3-D Hilbert curve 
We adopt the method suggested by Moon, et al. (2001) to construct 3-D Hilbert curve. 
This method first defines the orientation of Hilbert curve: for any level of Hilbert curve, 
the coordinates of starting point and ending point only differ in one dimension. The curve 
is i-orientated if both points lie on a line parallel to i-th coordinate axis. The Hilbert curve 
can be recorded as ordered 2d vertexes and 2d orientations of their corresponding sub cells. 
Therefore, what needed is to generate permutation rules from orientations. For example, 
the orientation series for 2-D Hilbert curve (see Figure 3) is 1-2-2-1 for vertex 1 to 4, 
respectively.  
 
3-D curve can be constructed from two 2-D curves (see Figure A-1). The orientation 
series of 3-D curve are the same as the ones in 2-D except the two vertices connected by 
the vertical line parallel to the newly introduced axis 3. Since the orientations for these 
two vertices change from 1-ortiented to 3-ortiented, the orientation series of this 3-D 
curve is 1-2-2-3-3-2-2-1 (first 2-D curve: 1-2-2-1, second 2-D curve: 1-2-2-1).  

Axis 1 
Axis 2 

Axis 3 
1 

2 2 
3 
3 

2 2 
1 

 
Figure A-1. Construct 3-D curve from two 2-D curves (the label stands for orientation) 

 
Permutation rules are generated from the orientation series (1-2-2-3-3-2-2-1) for each 
vertex. Since for the i-th rule the sub cell is shifted to i-th vertex, the shifting vector can 
be omitted in the following expressions, where only reflection/rotation matrix is shown.  
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For rule 1, the orientation is 1, the reflection/rotation matrix is: 
 

' 1 0 0 0 0 0 0 0
' 0 0 0 0 0 0 0 1
' 0 0 0 0 1 0 0 0
' 0 0 0 1 0 0 0 0

subcell 1: 
' 0 0 1 0 0 0 0 0
' 0 0 0 0 0 1 0 0
' 0 0 0 0 0 0 1 0
' 0 1 0 0 0 0 0 0

a a
b b
c c
d d
e e
f f
g g
h h

     
     
     
     
     
     =     
     
     
     
               

 

(A-1) 

 
For rule 2, the orientation 2, the reflection/rotation matrix is: 
 

' 1 0 0 0 0 0 0 0
' 0 1 0 0 0 0 0 0
' 0 0 0 0 0 0 1 0
' 0 0 0 0 0 0 0 1

subcell 2: 
' 0 0 0 0 1 0 0 0
' 0 0 0 0 0 1 0 0
' 0 0 1 0 0 0 0 0
' 0 0 0 1 0 0 0 0

a a
b b
c c
d d
e e
f f
g g
h h

     
     
     
     
     
     =     
     
     
     
               

 

(A-2) 

 
For rule 3, the orientation is 2, the reflection/rotation matrix is the same as rule 2. 
 
For rule 4, the orientation is 3, the reflection/rotation matrix is: 
 

' 0 0 1 0 0 0 0 0
' 0 0 0 1 0 0 0 0
' 1 0 0 0 0 0 0 0
' 0 1 0 0 0 0 0 0

subcell 4: 
' 0 0 0 0 0 0 1 0
' 0 0 0 0 0 0 0 1
' 0 0 0 0 1 0 0 0
' 0 0 0 0 0 1 0 0

a a
b b
c c
d d
e e
f f
g g
h h

     
     
     
     
     
     =     
     
     
     
               

 

(A-3) 

 
The 3-D curve is constructed by mirroring the two 2-D curves by the plane perpendicular 
to the axis 3 (see Figure A-1). The above 4 rules are the mapping of sub cells on the first 
2-D curve. The mapping of 4 sub cells on the second 2-D curve mirrors the mapping of 
these on the first 2-D curve.  The rest four rules on the second 2-D curve can be obtained 
by making a transpose operation along the lower diagonal of the corresponding 
reflection/rotation matrix of the above 4 rules. For example, rule 7 is obtained from rule 2 
by this transpose operation. 
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' 0 0 0 0 1 0 0 0
' 0 0 0 0 0 1 0 0
' 0 0 1 0 0 0 0 0
' 0 0 0 1 0 0 0 0

subcell 7: 
' 1 0 0 0 0 0 0 0
' 0 1 0 0 0 0 0 0
' 0 0 0 0 0 0 1 0
' 0 0 0 0 0 0 0 1

a a
b b
c c
d d
e e
f f
g g
h h

     
     
     
     
     
     =     
     
     
     
               

 

(A-4) 

 
Only three (Equation A-1, A-2 and A-3) out of eight rules are distinct, the other five rules 
are either the same as these three rules or their transpose. This gives out a simple way to 
construct Hilbert curve.   
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