
A Theory of the Spatial Computational Domain

Shaowen Wang 1 and Marc P. Armstrong 2

1 Academic Technologies – Research Services and Department of Geography, The University of

Iowa
Iowa City, IA 52242

Tel: +1 319-335-6713
FAX: +1 319-335-5505

Email: shaowen-wang@uiowa.edu

2 Department of Geography and Program in Applied Mathematical and Computational Sciences,
The University of Iowa
Iowa City, IA 52242

Tel: +1 319-335-0153
FAX: +1 319-335-2725

Email: marc-armstrong@uiowa.edu

Abstract
Most parallel processing methods developed for geographic analyses bind the design of
domain decomposition and task scheduling to specific parallel computer architectures.
These methods are not adaptable to emerging distributed computing environments that
are based on Grid computing and peer-to-peer technologies. This paper presents a
theory to support the development of adaptable parallel processing methods for
geographic analyses performed on heterogeneous parallel processing environments.
This theory of the spatial computational domain represents the computational intensity
of geographic data and analysis methods, and transforms it into a common framework
based on transformation theories from earlier cartographic research. The application of
the theory is illustrated using an inverse distance weighted interpolation method. We
describe the underpinnings of this analysis, and then address the latent parallelism of a
conventional sequential algorithm based on spatial computational domain theory.
Through the application of this theory, the development of domain decomposition
methods is decoupled from specific high performance computer architectures and task
scheduling implementations, which makes the design of generic parallel processing
geographic analysis solutions feasib le.

1. Existing Problems in Parallel Processing of Geographic Information
The state-of-the-practice in parallel processing of geographic information binds the design of
domain decomposition and task scheduling to specific conventional parallel computer architectures.
This tight-coupling approach is problematic to software design for three reasons:

1.) Domain decomposition and task scheduling methods focus on the characteristics of
spatial data and operations performed on them.

2.) Any change to spatial data or operations requires a corresponding change in the design
of domain decompositio n and task scheduling methods.

3.) Domain decomposition and task scheduling strategies depend upon specific parallel
architectures.

These three problems are analogous to those observed in graphics programming before the advent
of device-independent software. In this case, these problems hinder the development of portable
parallel geographic analysis methods based on computational Grids (see endnote). To eliminate
these problems, we introduce a new spatial computational domain theory and illustrate an
application using the TeraGrid (TeraGrid, 2005).

2. Spatial Computational Domain Theory
The spatial computational domain is formally defined to comprise several two-dimensional
computational intensity surfaces. Given a spatial domain projected to a two-dimensional (x and y)
Euclidian space, each two-dimensional computational surface can be represented as a vector c =
(cij) in the space RN, where N = xc × yc, and where xc is the number of cells in the x dimension, and
yc is the number of cells in the y dimension of the computational surfaces. Each component of c
corresponds to the computational intensity at cell (i, j).

The spatial computational domain is similar to an image obtained from an evaluation of the following
function:

f: I2 = [0, 1] × [0, 1] ? R (1)

at cells (i/xc, j/yc)∈I2, i = 1, …, x c, j = 1, … , yc . Thus,

cij = f (i/x c, j/yc) (2)

The value of cij represents the computational burden derived from a new computational
transformation concept that is consistent with the role of transformations in other domains of
GIScience (Tobler, 1979):

• Computing time: the time taken to perform the analysis within cell (i, j);
• Memory: the memory required to perform the analysis within cell (i, j); and
• I/O: data input/output and transfers to perform analyses within cell (i, j).

3. Computational Transformation
A computational transformation elucidates the computational intensity of a particular geographic
analysis based on the characteristics of spatial data and operations. Two types of computational
transformations are identified:

1.) Data-centric functions transform spatial data characteristics into memory or I/O
surfaces.
2.) Operation-centric functions consider the spatial operations that are directly or indirectly
related to spatial data characteristics, and transform the characteristics of spatial operations
into a computing time surface.

3.1 An Illustrative Example
An operation-centric transformation function illustrates the spatial computational domain for

Clarke’s inverse distance weighted (IDW) interpolation algorithm (Clarke, 1995). This domain
consists of a single computing time surface because both memory and I/O requirements are trivial
even if a common desktop PC (e.g., 1G RAM and 2GHz Pentium processor) is used to execute the
algorithm. The transformation function - IDW-of on the cell (i, j) is defined as follows:

IDW-of(i, j) ? timeUnit ×
esholddensityThrdpns

ne

jiji

ji

+×+),(),(

),(

)1(

(3)

where ne represents the number of empty grids that invoke a search for their k-nearest neighbors;
ns represents the number of sampling points; dp represents the local density of sampling points;
timeUnit is a constant used to convert the value to a computing time unit (e.g., seconds);
densityThreshold is a constant that represents the minimum point density in any given region of the
domain considered, and prevents the denominator from becoming zero. The value of),(jidp is

calculated using the following equation:

),(jidp =

∑

∑

=

=

+++

+

neighbor

neighbor

number

k
kkjiji

number

k
kji

nensnens

nsns

1
),(),(

1
),(

)(

(4)

where kns represents the number of existing sampling points within the (i, j) neighbor cell indexed as
k ; and neighbornumber represents the number of (i, j) neighbors being considered.

Figure 1 shows a synthetic dataset with 2000 sampling points. The raster structure (2000 by 2000)
is created in the initialization step of Clarke’s algorithm. Figure 2 shows a 3-D plot of

Figure 1. A dataset of two thousand points, one cluster with a uniform random distribution

Figure 2. A 3-D plot of the spatial computational domain for Clarke’s algorithm using the dataset in
Figure 1; cell size is specified as 62.5 × 62.5, and thus the computiontal domain dimension is fixed

at 32 × 32 given a 2000 × 2000 data domain dimension.

the spatial computational domain derived from this dataset using the computational transformation
function (Equation 3). Based on a decompositio n of the spatial computational domain using a
quadtree method (Wang and Armstrong, 2003), a parallel interpolation of this dataset using the
TeraGrid (Table 1) has a speedup of more than 20 times compared to a sequential algorithm
executed on the fastest single processor of the TeraGrid. Table 2 shows the computing time taken
by the parallel interpolation analysis in a set of computational experiments in which the spatial
computational domain was decomposed to create different numbers of parallel jobs. These jobs are
scheduled to available TeraGrid resources to achieve load balancing based on computational

intensity information derived from their spatial computational domain. This is a preliminary result; we
are devising additional experiments to evaluate performance.

Table 1. Hardware information about TeraGrid resources used

Sites Compute nodes CPU Intra-

network
Disk OS Local

resource
manager

Dual-processor: 96
nodes;

RAM memory: 4GB

Intel® Xeon®
2.4GHz

Myrinet
2000,
Gigabit
Ethernet,
Fiber
Channel

4TB
Network
File System

Linux
2.4.21-
SMP
(shared
memory
multi-
processor)

PBS ANL/

UC

Dual-processor: 16
nodes;
RAM memory: 4GB

Intel® Itanium®
2, 1.3 GHz

Same 4TB
Network
File System

Linux
2.4.21-
SMP

Same

Caltech Dual-processor: 52
nodes;

RAM memory: 6GB

Same Same 75 TB
Parallel
Virtual File
System

Linux
2.4.19 -
SMP

Same

Dual-processor: 128
nodes;
RAM memory:
12GB

Same NCSA

Dual-processor: 128
nodes;
RAM memory: 4 GB

Same Same 5TB
Network
File System

Linux
2.4.21-
SMP

SDSC Dual-processor: 128
nodes;
RAM memory: 4GB

Same Same 1.6TB
Network
File System

Linux
2.4.19 -
SMP

Same

4. Concluding Discussion
Our spatial computational domain theory has solved several problems present in previous
GIScience parallel processing research because it provides computational intensity representations
that are required for efficient parallel processing of geographic analyses. At the same time, this
theory has paved the way to establish generality in domain decomposition methods. The
development of these functions is independent of any computer architecture, which also indicates the
theory can be used to address problems with architectural incompatibilities. Our ongoing research
focuses on the application of this theory to develop geo-middleware that supports other types of
Grid-based geographic information analyses.

Table 2. Interpolation time in the TeraGrid environment

Note
Grid computing has been the recent focus of a substantial amount of research and development
activity. Though its basic concepts were stated earlier, the term Grid was coined in the late 90s by
Foster and Kesselman (1999) to describe a set of resources distributed over wide-area networks
that can support large-scale distributed applications. The analogy likens the Grid to the electrical
power grid: access to computation and data should be as easy, pervasive, and as standardized as
plugging an appliance into an outlet (Foster and Kesselman, 1999). In the foundational paper “The
Anatomy of the Grid”, Foster et al. (2001) more formally define the Grid as a set of environments
for coordinated resource sharing and problem solving in dynamic, multi-institutional, virtual
organizations. This coordination is orchestrated using protocols and specialized software referred to
as Grid middleware. In that paper, they go on to argue that the Grid is central not only to “e-
science”, but also to industry and commerce, where coordination of distributed resources both
within and across organizations has become an important business activity.

5. References
Clarke, K. C., 1995, Analytical and Computer Cartography, Second Edition (Englewood

Cliffs, NJ: Prentice-Hall).
Foster, I., Kesselman, C., and Tuecke, S. (2001) The anatomy of the Grid: enabling scalable virtual

organizations. International Journal Supercomputer Applications, 15(3), available at:
http://www.globus.org/research/papers.html.

Foster, I., and Kesselman C., 1999, The Grid: Blue Print for a New Computing Infrastructure
(San Francisco, CA: Morgan Kaufmann Publishers, Inc.).

TeraGrid, 2005, http://www.teragrid.org/.
Tobler, W. R., 1979, A transformational view of cartography. American Cartographer, 6(2),

101-106.
Wang, S., and Armstrong, M. P., 2003, A quadtree approach to domain decomposition for spatial

interpolation in Grid computing environments. Parallel Computing, 29(10), 1481-1504.

TeraGrid sites Number of computing jobs submitted to each TeraGrid site

ANL/UC 230 57 260 68

NCSA 138 44 219 71

SDSC 113 34 161 74

Caltech 62 25 106 38

ANL/UC 1 0 2 5

Computing Time
(hh:mm:ss)

00:39:46 00:44:19 00:42:21 00:48:3 2

