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Abstract 
Most parallel processing methods developed for geographic analyses bind the design of 
domain decomposition and task scheduling to specific parallel computer architectures.  
These methods are not adaptable to emerging distributed computing environments that 
are based on Grid computing and peer-to-peer technologies.  This paper presents a 
theory to support the development of adaptable parallel processing methods for 
geographic analyses performed on heterogeneous parallel processing environments.  
This theory of the spatial computational domain represents the computational intensity 
of geographic data and analysis methods, and transforms it into a common framework 
based on transformation theories from earlier cartographic research.  The application of 
the theory is illustrated using an inverse distance weighted interpolation method.  We 
describe the underpinnings of this analysis, and then address the latent parallelism of a 
conventional sequential algorithm based on spatial computational domain theory.  
Through the application of this theory, the development of domain decomposition 
methods is decoupled from specific high performance computer architectures and task 
scheduling implementations, which makes the design of generic parallel processing 
geographic analysis solutions feasib le.  
 

 
1. Existing Problems in Parallel Processing of Geographic Information  
The state-of-the-practice in parallel processing of geographic information binds the design of 
domain decomposition and task scheduling to specific conventional parallel computer architectures. 
This tight-coupling approach is problematic to software design for three reasons: 

1.) Domain decomposition and task scheduling methods focus on the characteristics of 
spatial data and operations performed on them.  



2.) Any change to spatial data or operations requires a corresponding change in the design 
of domain decompositio n and task scheduling methods.   

3.) Domain decomposition and task scheduling strategies depend upon specific parallel 
architectures. 

These three problems are analogous to those observed in graphics programming before the advent 
of device-independent software.  In this case, these problems hinder the development of portable 
parallel geographic analysis methods based on computational Grids (see endnote).  To eliminate 
these problems, we introduce a new spatial computational domain theory and illustrate an 
application using the TeraGrid (TeraGrid, 2005). 
 
 
2. Spatial Computational Domain Theory 
The spatial computational domain is formally defined to comprise several two-dimensional 
computational intensity surfaces.  Given a spatial domain projected to a two-dimensional (x  and y) 
Euclidian space, each two-dimensional computational surface can be represented as a vector c = 
(cij) in the space RN, where N = xc × yc, and where xc is the number of cells in the x  dimension, and 
yc is the number of cells in the y dimension of the computational surfaces.  Each component of c 
corresponds to the computational intensity at cell (i, j).  
 
The spatial computational domain is similar to an image obtained from an evaluation of the following 
function: 

f: I2 = [0, 1] × [0, 1] ?  R (1)

at cells (i/xc, j/yc)∈I2, i = 1, …, x c, j = 1, … , yc .  Thus, 

cij = f (i/x c, j/yc) (2)

The value of cij represents the computational burden derived from a new computational 
transformation concept that is consistent with the role of transformations in other domains of 
GIScience (Tobler, 1979): 

• Computing time: the time taken to perform the analysis within cell (i, j);  
• Memory: the memory required to perform the analysis within cell (i, j); and  
• I/O: data input/output and transfers to perform analyses within cell (i, j). 

 
 
3. Computational Transformation 
A computational transformation elucidates the computational intensity of a particular geographic 
analysis based on the characteristics of spatial data and operations.  Two types of computational 
transformations are identified: 

1.) Data-centric functions transform spatial data characteristics into memory or I/O 
surfaces.  
2.) Operation-centric functions consider the spatial operations that are directly or indirectly 
related to spatial data characteristics, and transform the characteristics of spatial operations 
into a computing time surface. 

 

3.1 An Illustrative Example 
An operation-centric transformation function illustrates the spatial computational domain for 



Clarke’s inverse distance weighted (IDW) interpolation algorithm (Clarke, 1995).  This domain 
consists of a single computing time surface because both memory and I/O requirements are trivial 
even if a common desktop PC (e.g., 1G RAM and 2GHz Pentium processor) is used to execute the 
algorithm.  The transformation function - IDW-of on the cell (i, j) is defined as follows: 

IDW-of(i, j) ? timeUnit × 
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where ne represents the number of empty grids that invoke a search for their k-nearest neighbors; 
ns represents the number of sampling points; dp represents the local density of sampling points; 
timeUnit is a constant used to convert the value to a computing time unit (e.g., seconds); 
densityThreshold is a constant that represents the minimum point density in any given region of the 
domain considered, and prevents the denominator from becoming zero. The value of ),( jidp  is 

calculated using the following equation:  
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where kns represents the number of existing sampling points within the (i, j) neighbor cell indexed as 
k ; and neighbornumber  represents the number of (i, j) neighbors being considered. 

 
Figure 1 shows a synthetic dataset with 2000 sampling points.  The raster structure (2000 by 2000) 
is created in the initialization step of Clarke’s algorithm.  Figure 2 shows a 3-D plot of  



 

Figure 1. A dataset of two thousand points, one cluster with a uniform random distribution 



 
 

Figure 2. A 3-D plot of the spatial computational domain for Clarke’s algorithm using the dataset in 
Figure 1; cell size is specified as 62.5 × 62.5, and thus the computiontal domain dimension is fixed 

at 32 × 32 given a 2000 × 2000 data domain dimension.  
 
the spatial computational domain derived from this dataset using the computational  transformation 
function (Equation 3).  Based on a decompositio n of the spatial computational domain using a 
quadtree method (Wang and Armstrong, 2003), a parallel interpolation of this dataset using the 
TeraGrid (Table 1) has a speedup of more than 20 times compared to a sequential algorithm 
executed on the fastest single processor of the TeraGrid.  Table 2 shows the computing time taken 
by the parallel interpolation analysis in a set of computational experiments in which the spatial 
computational domain was decomposed to create different numbers of parallel jobs. These jobs are 
scheduled to available TeraGrid resources to achieve load balancing based on computational 



intensity information derived from their spatial computational domain. This is a preliminary result; we 
are devising additional experiments to evaluate performance.  

 
Table 1. Hardware information about TeraGrid resources used 

 
Sites Compute nodes CPU Intra-

network 
Disk OS Local 

resource 
manager     

Dual-processor: 96 
nodes; 

RAM memory: 4GB 
 

Intel® Xeon® 
2.4GHz 

Myrinet 
2000, 
Gigabit 
Ethernet, 
Fiber 
Channel 

4TB 
Network 
File System

Linux 
2.4.21-
SMP 
(shared 
memory 
multi-
processor) 

PBS ANL/ 

UC 

Dual-processor: 16 
nodes; 
RAM memory: 4GB 

 

Intel® Itanium® 
2, 1.3 GHz  
 

Same 4TB 
Network 
File System

Linux 
2.4.21-
SMP 

Same 

Caltech Dual-processor: 52 
nodes; 

RAM memory: 6GB  
 

Same Same 75 TB 
Parallel 
Virtual File 
System 

Linux 
2.4.19 - 
SMP 

Same 

Dual-processor: 128 
nodes; 
RAM memory: 
12GB 

Same NCSA 

Dual-processor: 128 
nodes; 
RAM memory: 4 GB 

Same Same 5TB 
Network 
File System

Linux 
2.4.21-
SMP 

 

SDSC Dual-processor: 128 
nodes; 
RAM memory: 4GB 

Same Same 1.6TB 
Network 
File System

Linux 
2.4.19 - 
SMP 

Same 

 
 
4. Concluding Discussion 
Our spatial computational domain theory has solved several problems present in previous 
GIScience parallel processing research because it provides computational intensity representations 
that are required for efficient parallel processing of geographic analyses.  At the same time, this 
theory has paved the way to establish generality in domain decomposition methods.  The 
development of these functions is independent of any computer architecture, which also indicates the 
theory can be used to address problems with architectural incompatibilities.  Our ongoing research 
focuses on the application of this theory to develop geo-middleware that supports other types of 
Grid-based geographic information analyses. 
 



Table 2. Interpolation time in the TeraGrid environment 

 
 
Note 
Grid computing has been the recent focus of a substantial amount of research and development 
activity.  Though its basic concepts were stated earlier, the term Grid was coined in the late 90s by 
Foster and Kesselman (1999) to describe a set of resources distributed over wide-area networks 
that can support large-scale distributed applications.  The analogy likens the Grid to the electrical 
power grid: access to computation and data should be as easy, pervasive, and as standardized as 
plugging an appliance into an outlet (Foster and Kesselman, 1999).  In the foundational paper “The 
Anatomy of the Grid”, Foster et al. (2001) more formally define the Grid as a set of environments 
for coordinated resource sharing and problem solving in dynamic, multi-institutional, virtual 
organizations.  This coordination is orchestrated using protocols and specialized software referred to 
as Grid middleware.  In that paper, they go on to argue that the Grid is central not only to “e-
science”, but also to industry and commerce, where coordination of distributed resources both 
within and across organizations has become an important business activity. 
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TeraGrid sites Number of computing jobs submitted to each TeraGrid site  

ANL/UC 230 57 260 68

NCSA 138 44 219 71

SDSC 113 34 161 74

Caltech 62 25 106 38

ANL/UC  1 0 2 5

Computing Time 
(hh:mm:ss) 

00:39:46 00:44:19 00:42:21 00:48:3 2


