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Abstract
During the last two decades, evolutionary algorithms (EAs) have been applied to a wide

range of optimization and decision-making problems. Work on EAs for geographic analysis,
however, has been conducted in a problem-specific manner, which prevents an EA designed
for one type of problem to be used on others. The purpose of this paper is to describe a
framework that unifies the design and implementation of EAs for different types of
geographic optimization problems. The key element in this framework is a graph
representation that can be used to formally define the spatial structure of a broad range of
geographic problems. Based on this representation, spatial constraints (e.g., contiguity and
adjacency) of optimization problems can be effectively maintained, and general principles of
designing evolutionary algorithms for geographic optimization are identified. The framework
is applied to an example political redistricting problem.

1 Introduction
Geographers have placed a significant amount of attention on the development of methods that
are applied to optimization problems, especially those that require search for optimized
configurations of spatial entities and activities. These problems include environmental policy
making (Bennett et al. 2004), locational analysis (Scott 1970; Rushton 1988; Densham and
Rushton 1996), nature reserve selection (Church et al. 1996), natural resource management (Hof
and Bevers 1998), redistricting (Williams 1995), spatial data mining and exploratory analysis
(Han et al. 2001), spatial decision making in public and private sectors (Armstrong et al. 1991;
Crossland et al. 1995; Ghosh and Harche 1993), and transportation (Miller and Shaw 2001). In
this paper, these problems are loosely called geographic optimization problems. The search for
solutions to such problems often involves intensive computation, and a variety of approaches have
been developed to support their analysis.

Ideally, an approach to solving optimization problems should exhibit the following
properties:

• Efficiency. Optimal solutions must be found in an efficient manner. More formally, the time
required to find optimal solutions should be polynomial to the size of the problem.

• Optimality. Optimal solutions should always be found.
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• Equality. Optimal solutions should be found for all instances of the problem.

• Near-optimality. Many geographic optimization problems contain important social,
economic, and political factors that are difficult, if not impossible, to place in a
mathematical formulation. Optimal solutions to mathematically well formulated problems
will become non-optimal when the unmodeled factors or objectives are taken into account.
Therefore, the near-optimal (or second best) solutions to the problem may become more
favorable to the satisfaction of decision-makers (Simon 1960; Brill 1979; Hopkins 1984).

Unfortunately, no optimization algorithm has been found to satisfy all of the above
requirements. In general, current solution approaches can be placed into three categories, exact,
approximation, and heuristic, each of which is often designed to fulfill a subset of these
requirements.

Exact algorithms have been employed to search for optimal solutions to geographic
optimization problems (see, for example, Scott 1971; Daskin 1995). However, the time required
to find an optimum solution using an exact algorithm often grows exponentially with problem
size, and many real-world optimization problems cannot be solved in a reasonable period of time
(Garey and Johnson 1979). In addition, many exact algorithms are generally not constructed to
yield near-optimal solutions that are desired for many applications.

Approximation algorithms drop the optimality requirement — they do not require that
optimal solutions always be found, though they guarantee that the best solution found is within a
certain theoretical bound from the optimal solution for all instances of a problem (Vazirani 2001).
These algorithms are usually based either on greedy approaches or on the relaxation of exact
algorithms, notably linear programming. However, there are problems for which efficient
approximation algorithms are difficult to devise and their theoretical bounds are difficult to prove.

The third type of algorithm, called heuristics, cannot guarantee the closeness to optimum
for the solutions found. Nevertheless, they can be used to find a number of high quality
(near-optimal) solutions, even though they may not always find the global optimal solution to a
problem (Cooper 1964). Recent developments have been aiming to design general and flexible
approaches to solving a broad range of optimization problems. These general methods, called
metaheuristics (Osman and Kelly 1996) or modern heuristics (Reeves 1993), are often based on
natural processes (e.g., biological evolution) and they typically include tabu search (Glover 1989;
Glover 1990), simulated annealing (Kirkpatrick et al. 1983), ant colony systems (Dorigo et al.
1991), and evolutionary algorithms (Bäck et al. 1997).

Of these metaheuristic approaches, evolutionary algorithms have shown great promise for
calculating solutions to large and difficult optimization problems and have been successfully used
across a variety of problems in various applications (Goldberg 1989; Bäck et al. 1997). The use
of evolutionary algorithms in geographic problem-solving has been investigated by a number of
researchers during the last two decades (Hosage and Goodchild 1986; Dibble and Densham 1993;
Bennett et al. 1999; Krzanowski and Raper 1999; Brookes 2001; Jaramillo et al. 2002; Xiao et al.
2002; Bennett et al. 2004). However, the evolutionary approaches described in the literature are
based on representations and operations that are specific to each particular problem being
addressed by the research.

The purpose of this paper is to develop a unified framework that can be used to guide the
design and implementation of evolutionary algorithms for solving geographic optimization
problems. This approach is based on a general framework that can be used to formalize the
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representation of different problems. In the remainder of this paper, Section 2 discusses how this
framework is used to formulate the optimization problems in geographic analysis. Section 3
briefly introduces the principles of evolutionary algorithms, while Section 4 describes how these
algorithms can be used to solve geographic problems. In Section 5, the use of the framework is
demonstrated using an example political redistricting problem. Finally, we conclude this paper by
positioning it in the context of recent development in computational geography.

2 Formulating Geographic Optimization Problems
Two broad types of geographic optimization problems can be generally identified: those that
require the partitioning (or grouping) of spatial entities and those that require the selection of a
subset of spatial entities. For each type of problem, two subtypes can be defined according to
whether the partitioning or selection is spatially constrained. One may argue that a selection
problem is a special case of a partitioning problem, in which the spatial units are partitioned into
two subdivisions (one formed by selected entities, and the other by unselected entities). However,
it should be noted that when spatial constraints are required, they normally do not apply to the
unselected units. Therefore, it is necessary to distinguish selection and partitioning problems. The
four types are summarized below.

• Selection problems without spatial constraints. Among a number of spatial entities, a subset
is selected to satisfy a set of objectives. There is no specific spatial requirement about how
these selected entities should be organized in a space. Typical examples are the p-median
problem (Hakimi 1965) and set-covering problem (Schilling et al. 1993).

• Selection problems with spatial constraints. Entities selected must comply with some
spatial constraints. Site selection problems are an example where selected entities must be
contiguous (Cova and Church 2000; Xiao et al. 2002). Other examples include the harvest
problem in forestry management where selected entities (e.g., plots) must not be adjacent
(Hof and Bevers 1998; Murray and Church 1995).

• Partitioning problems without spatial constraints. For this type of problem, each spatial
entity is assigned a value and the goal is to find a combination of values for all entities so
that a set of objectives can be optimized. A typical example is the study of optimal
landscapes by Bennett et al. (2004).

• Partitioning problems with spatial constraints. For this type of problem, the space must be
partitioned in a certain way such that some spatial constraints are satisfied. Typical
examples include political redistricting problems where each district must be contiguous
(Williams 1995; Altman 1998).

A graph can be used to formulate geographic optimization problems. Here, a graph is
defined as G = (V, E), where V = {v1, v2, . . . , vn} is a set of n vertices, E is a set of edges with
each edge comprised of two vertices, and edge (vi, vj) ∈ E if and only if vertices vi and vj are
directly connected. In this notation, a vertex can be regarded as a spatial entity in the study area,
and the total number of entities (n) is finite.
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A graph G is connected if there exists at least one path between any two vertices. The
length of a path, L(vi, vj), is measured by the number of edges on the path between vertices vi

and vj. When L(vi, vj) = 1, it means that vi and vj are adjacent.
Besides the graph, we define two additional sets to describe the attributes of vertices and

edges. The vertex attribute set is A = {a1, a2, . . . , an}, where each component of A is a set of m
attributes for a vertex in V . That is, ai is a vector of attributes for the i-th vertex. The basic
attribute for an edge is the distance (or transportation cost) between the vertices at the two ends.
We can extend this distance to a set D that depicts the connections (e.g., distance or transportation
cost) between any two vertices. D is essential for solving many spatial problems. Intuitively, D
can be regarded as a matrix and dij ∈ D is the measure of cost between any two vertices, i and j,
in V .

Given graph G for a geographic optimization problem, a feasible solution to the problem is
represented by another graph G′ = (V ′, E ′), where V ′ is a set of vertices that forms a solution,
and E ′ depicts the spatial structure of vertices in V ′. For selection problems, V ′ is a subset of V .
For partitioning problems, V ′ contains the same vertices of V . However, those vertices that
belong to one particular partitioning subdivision can be reasonably grouped as a unique subset.
Therefore, we have V ′ = {U}, where U is the subset that contains the vertices in one subdivision.
It should be noted that a subdivision need not be spatially contiguous. Instead, in some cases,
partitioning can mean categorization or classification, in which each spatial unit (represented as a
vertex) is assigned an integer that indicates a particular class (see, for example, Bennett et al.
2004). For partitioning problems with spatial constraints, the structure of V ′ or {U} can be
determined by E ′.

Our goal in solving a geographic optimization problem is to find a solution G∗ that, without
loss of generality, minimizes

F = (f1, f2, . . . , fk) , (1)

where F is a set of objective functions (f1, f2, . . . , fk), and each objective function can be
denoted as:

fi : G × G′ × D × A → R, 1 ≤ i ≤ k . (2)

3 Evolutionary Algorithms
The 1960s saw three similar, but independent, conceptual developments in Germany and the
United States that let to the emergent field of evolutionary algorithms (EAs): evolutionary
strategies (Rechenberg 1965), evolutionary programming (Fogel 1962), and genetic algorithms
(Holland 1962). Active interaction among these groups began in the 1980s, which led to the
formation of other new branches of research such as genetic programming (Koza 1992). The
study of these algorithms collectively is called evolutionary computation and is now an area of
intensive interdisciplinary research with a substantial literature that has been established during
the past two decades (see Goldberg 1989; Bäck et al. 1997).

A typical and, to some extent, simple EA has the following components (see Forrest 1991):

• A population where each individual represents a solution to the problem.
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• A scheme to randomly initialize and reproduce the population based on the fitness of
individuals.

• A fitness function that is used to evaluate individuals according to the objective(s) of the
problem.

• A set of evolutionary operators (including selection, recombination, and mutation) that is
used to manipulate individual solutions.

• A set of parameters that defines the above features (e.g., population size and the
probabilities of operators being invoked).

An EA can be regarded as a computer simulation of the natural evolutionary process and
many EA components have been named using biological terminology. For example, an individual
is also called a chromosome (a one-chromosome individual), and each feature (variable) in a
solution can be called an allele. The procedure for a typical EA is outlined as follows:

Algorithm EA. General procedure for an EA
1 t := 0
2 Initialize population G(t)
3 REPEAT UNTIL termination criterion is satisfied
4 Evaluate each individual in G(t)
5 Select parents from G(t) based on their fitness
6 Apply evolutionary operators to parents and produce offspring
7 t := t + 1

In Step 3, a maximum number of iterations is normally used as the termination criterion.

4 Design of EAs for Geographic Optimization Problems
The type of encoding used to represent feasible solutions to geographic optimization problems is
determined by two conditions: the relation between V ′ and V , and the characteristics of E ′.

For V ′, two kinds of relations with V can be recognized:

• V ′ ⊂ V . V ′ is a subset of V . Selection problems belong to this group.

• V ′ = V . In this case, the locations of V ′ are identical to those of all vertices in V .
Partitioning problems have this characteristic.

For relations between E and E ′, we know that E defines the spatial relations among all
vertices in V , and, that, equivalently, E ′ confines the spatial relations among vertices in a
solution. We can identify the following relations between E and E ′:

• E ′ ⊂ E. Selection or partitioning problems with spatial constraints belong to this category.

• E ′ = ∅. For some problems, spatial relations among vertices in a solution are not explicitly
needed. To solve this type of problem, E ′ is not required in the problem formulation, and
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Table 1: Encoding for the V /V ′ and E/E ′ relations
RelationCode Meaning

V and V
′

E and E
′

∆ Subset V
′ ⊂ V E

′ ⊂ E

E Equal V
′
= V -

Φ Empty - E
′
= ∅

we have E ′ = ∅. Selection or partitioning problems without spatial constraints are included
in this category. Note that E ′ = ∅ means that E ′ is not needed in the solution
representation, but it does not imply that a spatial relation among vertices in V ′ does not
physically or logically exist.

A Greek letter is used to represent each type of relation discussed here (Table 1). With this
notation defined, the encoding type used by each geographic evolutionary algorithm can be
specified by a combination of two conditions. The first condition indicates the relation between V
and V ′, and the second condition indicates the relation between E and E ′. Each combination is
denoted by a string of two letters delimited by a slash (/):

• ∆/Φ: selection problems without spatial constraints,

• ∆/∆: selection problems with spatial constraints,

• E/Φ: partitioning problems without spatial constraints, and

• E/∆: partitioning problems with spatial constraints.

In addition, if we use an asterisk (*) to denote all possible conditions (or “don’t care”), the
following general problem types can be written as:

• ∆/*: selection problems,

• E/*: partitioning problems,

• */∆: problems with spatial constraints,

• */Φ: problems without spatial constraints, and

• */*: all geographic optimization problem types.

4.1 Encoding Strategies
For selection problems (∆/*), since V ′ ⊂ V , it is not necessary to record the location of each
vertex in a solution. Instead, we can directly use the identification number of each vertex in the
chromosome. In a p-median problem, for example, the chromosome is an array of integers (i.e.,
id’s) with length equal to p. For partitioning problems (E/*), since V ′ = V , a string of n integers
can be used to represent feasible solutions; the integer value of the i-th element of the string
indicates the subdivision to which the i-th spatial unit belongs.

For problems with spatial constraints (*/∆), the edge information must also be stored so
that the spatial constraints can be effectively formulated and maintained. There are different
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approaches to storing edge information. In previous research, edge information was explicitly
recorded for each vertex in an individual solution of the EA (Xiao et al. 2002). For each
individual solution, its data structure consists of a tuple (vi, Ni), where vi is a vertex, and
Ni = {(vi, v) | (vi, v) ∈ E, v ∈ V } is a set of neighbors for vi. An individual solution, therefore,
is represented by an array of (vi, Ni). While this data structure is effective, it is inefficient because
whenever a solution is changed (i.e., some elements in V ′ are changed), edge information for all
vertices in V ′ must be updated. The updating process must refer to E, which contains all edge
information for G. The fact is, while E is available, it is not necessary to keep edge information
for each individual vertex redundantly. Consequently, the data structure for */∆ is still a string of
integers. However, in contrast with problems without spatial constraints (*/Φ), E must be stored
and made accessible for the entire EA.

4.2 Initialization Strategies
We can design an initialization algorithm based on an accretion procedure for selection problems
(∆/*). In this algorithm, and others that follow, we use p to denote the number of vertices to be
selected, or the number of subdivisions to be partitioned. In addition, set V ′ is always used to
denote the vertices in a feasible solution.

Algorithm I1. Accretion for selection
1 i := 0
2 V ′ := ∅

3 V1 := V
4 REPEAT UNTIL i = p
5 Randomly select a vertex from V1

6 Add v into V ′

7 Update V1 so that it only contains eligible vertices
8 i := i + 1

In Algorithm I1, a set of vertices (V1) is maintained to contain vertices that can be added
into V ′ without violating any spatial constraint. In Step 7 of Algorithm I1, an eligible vertex
means such a vertex that can be added into V ′ without violating the spatial constraints. When no
spatial constraint is required, V1 will contain all unselected vertices in V (i.e., V1 = V \ V ′).

We can develop a second initialization algorithm (Algorithm I2) to generate initial
solutions to partitioning problems.

Algorithm I2. Accreting for partitioning
1 i := 0
2 V ′ := ∅

3 Randomly select p vertices from V and add them to V ′

4 Assign the remaining n − p vertices in V to a subdivision

Step 3 of Algorithm I2 will result V ′ = {Ui|i = 1, ..., p}, where Ui is a set for the i-th
subdivision and it contains one and only one unique vertex, which serves as the seed of the
subdivision. The specific procedure used in Step 4 varies from problem to problem. We will
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Figure 1: Overlay and repair for partitioning problems. Here, p = 3 and the letter in each cell
indicates the subdivision (A, B, or C) of that cell. Each cell is indexed using row ordering: the
cell on the upper-left corner is referred to as 1, while the cell on the lower-right corner is 9. (a) a
hypothetical parent solution (V ′ = {{1, 2}, {4, 7, 8, 9}, {3, 5, 6}}; (b) another hypothetical parent
solution (V ′ = {{3, 5, 6, 9}, {1, 2, 4}, {7, 8}}); (c) the result of overlay
(V ′′

3
= {{1, 2}, {3, 5, 6}, {4}, {7, 8}, {9}}); (d) a possible result of a repair procedure when

contiguity is required (V ′ = {{1, 2}, {3, 5, 6, 9}, {4, 7, 8}}); (e) a possible repair result when
spatial constraints are not required (V ′ = {{1, 2, 9}, {4, 7, 8}, {3, 5, 6}})

discuss how this can be achieved for political redistricting problems in Section 5. When no spatial
constraint is required, Step 4 can be implemented in a random fashion in which each vertex is
randomly assigned to a subdivision (see Bennett et al. 2004).

4.3 Design of Recombination Operations
The recombination operations reported in the literature share a similar behavior: the genetic
make-up from two selected individuals (parents) is used to create a new individual solution
(child). For geographic optimization problems, an overlay and repair approach can be used to
recombine two individual solutions in an EA. In this approach, an overlay operation is conducted
first to combine the vertices of two solutions V ′

1
and V ′

2
into a new set, V ′′

3
. For selection

problems, the overlay operation will result in a superset that contains vertices in both V ′

1
and V ′

2
.

For partitioning problems, however, a set of new distinct subdivisions will be generated by the
overlay operation (Figure 1c). In both cases, the size of V ′′

3
(denoted as |V ′′

3
|) normally will be

larger than the size of either parent solution. A repair procedure is then needed to reduce the size
of V ′′

3
to form a feasible solution.
The repair process can be implemented in multiple ways. For selection problems, one can

adopt a dropping procedure in which vertices are removed from V ′′

3
until the number of vertices in

V ′′

3
equals that of a feasible solution.

Algorithm R1. Overlay and repair based on dropping
1 V ′

1
and V ′

2
are selected from the population

2 V ′′

3
:= V ′

1
∪ V ′

2

3 V ′ := ∅

4 IF |V ′′

3
| = p, THEN V ′ := V ′′

3
and STOP

5 REPEAT UNTIL |V ′′

3
| = p

6 V1 := FIND-MOVABLE-VERTICES(V ′′

3
)

7 Randomly select a vertex (v′) from V1
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8 Remove v′ from V ′′

3

9 V ′ := V ′′

3

In Algorithm R1, function FIND-MOVABLE-VERTICES(V ′) returns a set that contains all
movable vertices in set V ′. A vertex is movable if it can be removed from V ′ without violating
spatial constraints, if any. When no spatial constraint is required, all vertices in V ′′

3
will be

moveable (in Step 6).
For partitioning problems with spatial constraints, a plausible approach to repairing V ′′

3

toward a feasible solution is through merging (Algorithm R2, see also Figure 1d).

Algorithm R2. Overlay and repair based on merging
1 V ′

1
and V ′

2
are selected from the population

2 V ′′

3
:= {U |U is a set that contains all vertices in a subdivision after overlay}

3 V ′ := ∅

4 IF |V ′′

3
| = p, THEN V ′ := V ′′

3
and STOP

5 REPEAT UNTIL |V ′′

3
| = p

6 Randomly select two subdivisions, Ui and Uj , from V ′′

3

7 Merge Ui and Uj if doing so does not violate the constraints
8 V ′ := V ′′

3

For partitioning problems without spatial constraints, we can design a third recombination
operation that assigns a cell to one of the subdivisions in its parent solutions. The assignment
procedure can be carried out using a random number generator, or based on some user-specified
rules. We call this algorithm R3, which is illustrated in Figure 1e.

4.4 Design of Mutation Operations
The design of mutation operations is based on a mechanism that changes the morphology and
location of a solution. In this approach, an existing solution is modified by exchanging some of its
vertices either with unselected vertices (for selection problems) or among different subdivisions
(for partitioning problems). It is possible to develop a mutation operation that can be used for all
types of problems (Algorithm M1, see below). Here a sets V2 is maintained to contain the vertices
that can be removed from V ′ so that the resulting V ′ does not violate spatial constraints. For
problems without spatial constraints, V2 will be identical to V ′.

Algorithm M1. Mutation
1 V2 := FIND-MOVABLE-VERTICES(V ′)
2 Randomly select a vertex (v′) from V2

3 UPDATE(V ′, v′)

Function FIND-MOVEABLE-VERTICES(V ) has been discussed before. Function UPDATE(V ′, v′)
repairs V ′ by replacing v′ with a new vertex (selection problems) or assigning v ′ to a new
subdivision (partitioning problems); this function also guarantees that the spatial constraint, if
any, not be violated. Algorithm M1 can be repeated a number of times during the EA execution.
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4.5 Summary
Algorithms described above provide a guideline for the design and implementation of an EA to
solve a geographic optimization problem. In general, an EA designed in this way can be denoted
as a combination of five symbols:

v/e/i/r/m , (3)

where v ∈ {∆, E} indicating the relation between V and V ′,
e ∈ {∆, Φ} indicating the relation between E and E ′,
i = the initialization algorithm,
r = the recombination method, and
m = the mutation method.
Using this notation, for example, we can specify the following geographic evolutionary

algorithm:

∆/∆/I1/R1/M1 ,

which defines an evolutionary algorithm that uses encoding type ∆/∆, and algorithms I1, R1,
and M1 for initialization, recombination, and mutation, respectively. This EA can be used to
solve a selection problem with spatial constraints.

The graph representation discussed here can also be applied to guide the design of new
types of spatial evolutionary algorithms that are not discussed in the previous sections. To
incorporate new encoding types, additional algorithms may need to be developed to perform
initialization, recombination and mutation operations.

5 An Application
Evolutionary algorithms have been used in a wide range of geographic optimizations. In this
section, we focus on a partitioning problem with spatial constraints. In particular, we develop an
evolutionary algorithm to solve political redistricting problems, in which a set of spatial units
(e.g., counties or census tracts) must be subdivided into a number of contiguous regions (Williams
1995; Altman 1998). In this research, a redistricting plan is encoded as a string of n integers,
where n is the number of total spatial units. Each element in the string is assigned an integer
value, which ranges from 1 to p, where p is the number of districts. We use ai to denote the
population size in the i-th spatial units. The goal to solve this problem is to find a redistricting
plan such that each district exhibits the ideal population size, a∗, which is computed as∑n

i=1
ai/p. We define the objective function as follows:

min f = 100 × 1

p×a∗

∑p

i=1
|ai − a∗| . (4)

Overall, we can categorize the EA for redistricting as E/∆/I2/R2/I2 + M1. The
initialization process is derived from Algorithm I2, which randomly selects p vertices as seeds
and then each spatial unit is assigned to its nearest seed. Here the distance between two spatial
units (vertices) is measured by the length between them (i.e., number of edges on the path). Step
7 of Algorithm R2 merges Ui and Uj if they are adjacent. Two mutation operations are developed.
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(a) f = 0.022 (b) f = 0.069 (c) f = 0.008

Figure 2: Redistricting plans generated by the EA (a and b), and the actual plan adopted for the
2000 congressional election (c)

The first merely applies the initialization operation (again, based on Algorithm I2) to create a new
solution. The second mutation operation is based on Algorithm M1. In the implementation of
Algorithm M1, function FIND-MOVEABLE-VERTICES in Step 1 randomly determines a district
and returns the vertices on its border that can be removed from the district without violating the
contiguity requirement; among these “moveable vertices”, one will be selected and be switched to
an adjacent district if doing so will not violate the contiguity (Step 3).

The EA outlined above was implemented using the C++ programming language on a Linux
platform. We tested the EA using a case study of Iowa Congressional redistricting, based on
Census 2000 data. According to Iowa Code section 42.4 and Iowa Constitution, a congressional
district shall not vary from the ideal population by more than one percent, and counties shall not
be split between more than one congressional district. To run the program, we set the population
size to 20 and the total number of iterations to 2000. Based on this problem setting, the program
was run on a Pentium M 1.4 GHz laptop and it finished in an average of 19.3 seconds. Two of the
EA results are shown in Figures 2a and 2b. It can be noted that the EA can be used to generate
high quality solutions, which satisfy the criteria required by law.

6 Conclusions
The rapid development of computing techniques during the past two decades has encouraged an
optimistic view of the computational issues that face geographers (see, for example, Dobson
1983). However, scientific study should not wait for breakthroughs in computation technology.
For computationally based research, it must be realized that the ultimate limitation on
computation is the inherent complexity of the problem to be solved, rather than the speed of the
computer system (Garey and Johnson 1979; Armstrong 1993). Developing new methods that
overcome the shortcomings of existing methods has always been a motivation that leads progress
in optimization research.

This paper addresses issues that are fundamental to geographic optimization in particular,
and geographic information science in general, including conceptualization of geographic
problems, spatial representation, and algorithm analysis; in this sense, it echoes geographers’
recent interests in computational science (see Openshaw 1994; Fotheringham 1998; Armstrong
2000). In a broader view, this research provides the starting point of a quest toward the
establishment of a unified framework for a variety of geographic optimization problems.
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