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Introduction 
 
Urban CA researchers are facing several challenges, such as, model structures, transition 
rules and model calibration and valiation (Clarke 2004, Xie and Batty 2004). Transition 
rules and model structures are usually application-dependent. Although some CA models 
have been argued to be generic in nature (White et al.1997, Wu 1998, Batty et al. 1999), 
these models are substantially different in their forms. The variations are due to the 
existence of many possible ways of defining the transition rules and model structures. For 
instance, Batty and Xie (1994) deployed the nested neighborhood space and a distance 
decay function from the seed of development to determine transition probability. White 
and Engelen (1993) developed a predetermined parameter matrix to control the 
development probability. Wu and Webster (1998) defined transition rules on the basis of 
multicriteria evaluation (MCE) method.  However, it is controversial how to evaluate the 
appropriateness of a transition rule selection in the context of fitting to a specific 
application. 
 
Objectives and Approach 
 
The purpose of this paper is to illustrate a new approach, Multinomial Logit Modeling, to 
model and calibrate urban CA transition rule. Multinomial Logit Model (MLM) has 
played an important role in spatial analysis and modeling in the fields such as landscape 
change, travel study and urban and regional planning (Stynes and Peterson 1984, 
McMillen 1989, Gabriel and Rosenthal 1989, Dale et al 1993, Waddle 2000, Finnie 2004 
Prashker and Bekhor 2004). MLM provides a detailed representation of the complex 
aspects of demands, based on strong theoretical justifications. Discovering a suitable 
solution for a specific application calls for both a considerable knowledge about the 
topics under exploration and a strong ability to apprehend the methodological and 
theoretical background of the model (Luce 1959, Ben-Akiva and Lerman 1985, Anderson 
et al. 1992, DeMaris 1992, Greene 1997, Jaccard 2001, Ben-Akiva and Bierlaire 2003). 
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A technical convenience of applying MLM in urban CA models is the explicit 
probabilities generated from MLM. Applying MLM to historical data, we can directly 
determine the probabilities of the popula tion mobility as well as the building change 
(Waddell 2000, Xie and Batty 2004). We can model household’s or building’s dynamics, 
producing corresponding possibilities, e.g. move out/move in/stay for households.   
 
We are developing a calibration procedure to validate MLM through applying the IPF 
(Iterative Proportional Fitting) method. The regional predictions of demographic and 
socioeconomic changes at the census geography by regional government agencies will be 
distributed to CA neighborhoods through IPF and to examine the sensitivity of MLM and 
CA models. 
 
Some Preliminary Results 
 
Household and Building Mobility Model can be summarized by the following conceptual 
models:  
Household_MLM = f(socioeconomic attributes <S1, S2, S3,… >, GeographicLocation)  
Building_MLM= f(physical environment factors<P1, P2, P3,… >, GeographicLocation)   
An output of preliminary results of Household Mobility Model, which is based on two 
attributes (household income and sex of household head), is shown below, 
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Conclusion 
 
Through integrating the multinomial logit model to model the demand-supply core of the 
urban model, external geo-demographic and geo-economic models can be linked to land 
supply suitability potentials. Hence, CA-based urban modeling becomes more applicable 
in urban planning process and more generic in land development decision-making, by 
incorporating the geography, demographics and socio-economics of the real city into the 
modeling and simulation. 
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