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In many problems of modeling spatial data, measurements are rarely enough to reconstruct the
true surface from which they were sampled. For example, population density surfaces, which are
conventionally derived as aggregates over irregularly shaped geographic regions, may be highly
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Abstract

In practical applications of area-to-point spatial interpolation, inequality constraints, such as
non-negativity, or more general constraints on the maximum and/or minimum allowable value
of the resulting predictions, should be taken into account. The geostatistical framework pro-
posed in this paper deals with area-to-point interpolation problems under such constraints,
while: (i) explicitly accounting for support differences between sample data and unknown
values, (ii) guaranteeing coherent predictions, and (iii) providing a measure of reliability for
the resulting predictions. The analogy between the dual form of area-to-point interpolation
and a spline allows to solve constrained area-to-point interpolation problems via a constrained
guadratic minimization algorithm, after accounting for the following three issues: (i) equality
and inequality constraints could be applied to different supports, and such support differences
should be considered explicitly in the problem formulation, (i) if inequality constraints are
enforced on the entire set of points discretizing the areal data, it is impossible to obtain a so-
lution of the quadratic programming problem, and (iii) the uniqueness and existence of the
solution has to be diagnosed. In this work, stable and efficient computation of point predic-
tions is achieved through the following two steps: (i) initial prediction at all locations via
unconstrained area-to-point interpolation, and (ii) constrained area-to-point interpolation with
inequality information only at those points whose initial predicted values violate the inequality
constraints. Last, the application of the proposed method to area-to-point spatial interpola-
tion with inequality constraints in one and two dimensions is demonstrated using realistically
simulated data.

Introduction

biased due to the insufficient information content of the data. Under these circumstances,



ancillary information, which may take the form of inequality constraints, such as non-negativity
for population density surfaces, can complement the lack of measurements.

Surface reconstruction is a common problem across several disciplines so various methods have
been proposed for incorporating inequality-type data into the construction of surface models with
measurement data. A simple traditional approach is to reset the violating initial predictions to the
nearest bound of the physical interval, which often produces artifact discontinuities in the
resulting surface.

In the geostatistical literature, more elaborate methods are found, such as (i) constraints on the
Kriging weights, (ii) the soft-Kriging approach, and (iii) constrained predictions. Various
approaches have been proposed to constrain Kriging weights, attributing violating Kriging
predictions to negative Kriging weights. For example, Barnes and Johnson (1984) provided an
algorithm to produce non-negative Kriging weights, using an iterative solution based on the
Kuhn-Tucker theorem, although the convergence of this algorithm is not guaranteed, and Limic
and Mikelic (1984) showed how to add positivity constraints on Kriging weights to obtain
positive predictions using Quadratic Programming (QP) techniques. Recently, Szidarovszky,
Baafi and Kim (1987) and Deutsch (1996) also provided algorithms that lead to non-negative
Kriging weights. However, it is important to recognize that positive weights is a sufficient, but
non-necessary condition for positive Kriging predictions (Journel, 1986; Walvoort and

de Gruijter, 2001), and may produce abrupt changes at locations where the constraints are
imposed. An alternative approach is to impose constraints on the Kriging predictions rather than
on the Kriging weights through the use of indicator constraint intervals, as suggested by Journel
(1986). The “soft-Kriging approach”, whose formalism allows building a predictor which honors
prior constraint intervals, including a constraint interval at all points in the study area, addresses
the confidence intervals for the resulting predictions, but requires internal consistency of the
covariance models used for the indicator variable, which is hard to obtain in practice. Another
approach is to constrain the Kriging predictions via non-linear optimization techniques (Barnes
and You, 1992; Dubrule and Kostov, 1986; Kostov and Dubrule, 1986); this approach will be
extended in this paper to address constrained area-to-point prediction. Outside geostatitics,
pioneering work has been done by Tobler (1979), who proposed a pychnophylactic interpolation
method to account for constraints, including mass-preservation and and non-negativity.
Furthermore, his work motivated follow-up solutions to “volume-matching problems” (or
“area-matching problems”), which are connected to the variational spline theories in statistics
(Dyn and Wong, 1987; Wong, 1980).

In this paper, we adopt a geostatistical approach to constrain prediction in the realm of non-linear
optimization problems. Two main methods will be applied to the task of area-to-point prediction,
while taking into account the support differences between areal data and point predictions
explicitly, and providing the uncertainty of such predictions. The first method is based on the
primal form of Kriging so that the minimization of Kriging variance will be extended to
incorporate the inequality constraints, while the second method is based on the analogy of dual
Kriging formalism with splines. The second approach produces very similar results with the
solution proposed by Tobler (1979) and Dyn and Wong (1987) in a particular case. In the
following sections, we outline the two methods of constrained area-to-point prediction, and
present comparative results in a case study.



2 Theory

Consider the problem of predicting the values of a continuous attrdatta set o prediction
locations{up, p=1,...,P} within a study ared, using areal data defined on a seKo$upports
{w,k=1,...,K}. Here, the notatiom denotes the coordinate vector of theh location, andy
denotes thé&-th support with centroidix and otherwise arbitrary shape. The number of prediction
locations within thek-th supportv is denoted a8, with S|, Pk = P. Note that a special case of

an areal support whose measure is infinitesimally small is a point supfo«td, if the k-th

supportvg is reduced to a poinii. In the following discussion, the unknown value at the location
u, denoted ag(u), is viewed as a realization of a random variable (RV), denotet{ as and the

set of all points RVs in the study domafZ(u), u € A} constitutes a random function (RF).

In this paper, we focus on area-to-point Kriging, which is an optimal linear predictor in the sense
that it minimizes the prediction error variance under the constraint of unbiasedness of the
predictor (Chiles and Delfiner, 1999; Cressie, 1993; Isaaks and Srivastava, 1989). The following
discussion is based on the intrinsically stationary RF, where the process is characterized by the
meanmy (u) and the covariance functid®y (u,u’) or the variogranyz(u,u’). Under intrinsic
stationarity, the expected value of the difference (increment) between any twa(RYand

Z(u+ h) separated by a distance vector [u' —u|, V u,u’ € Ais zero:E[Z(u+h) —Z(u)] =0,
which entails that the expected value of any R\) is constant but unknown:

E[Z(u+h)] = mz, Vu € A. The variance of the difference of any two R¥&1) andZ(u+h)

depends only on the separation distance vettdar[Z(u+h) — Z(u)] = 2yz(h).

Suppose that the areal datum corresponding té-tthesupportvy, denotedd(vy), is linked to

point support values via a sampling functign

z A
divi) = gk(u)z(u)du~ % gi(up)z(up)
uevy p=1
wherePR represents the number of points used to discretize the areal swppamtigy(up)
denotes the value of the sampling function with respect tiitiesupportv at the locatiorup.
Some typical examples of the sampling function (Kyriakidis and Yoo, 2005) include an indicator
functiongy(up) = 1, if up € v, 0 if not, where the areal datud{vy) is simply the sum of all
points within supporty. Another sampling function that has a wide application is an indicator
function normalized by the total numbBg of points within any suppon: g«(up) = 1/, if
Up € Vi, 0 if not. In this case, the areal datut(vy) is simply the mean of al’ point values
within supportv.
Since thek-th areal support datumh(vk) is viewed as a realization of a new B vy), the
moments of th& areal RVs{D(v), k=1,...,K} are functionally related to those of the point
RF{Z(u),u € A}. The mean of th&-th areal RVD(w), denoted asp(w), is a linear function of
the mean of point support values:

R R
E{D()} = E{zlgkwp)z(um}: > (s E{Z(uy))
p= p=

H(

= > Gk(Up)mz =mp(vi)
p=1



The covariance between any two areal ®(sk) andD(vy ) is a double weighted linear
combination of point covariance valu€g(|up — uy|) between all possible vectors are formed by
any two prediction locationsy, € Vi, Uy € Vi¢ (Arbia, 1989):
P Pk’
CovD(W),D(Vie)} = 3 > Gk(Up)ak(Up)Cz(|up—Up|) = Co(Vk; Vic)
p=1p=1

The cross-covariance between any areallRVy) and any point RVZ(uy ), denoted as
Cbz(Vk,Up), is derived as:

Cov{D(w),Z(uy)} = Cov{

P P
Zlgk(up>z(up)] »Z(Uw)} = Zlgk(up)Cov{Z(up),Z(qu)}
p= p=

s

= Ok(Up)Cz(Jup — up|) = Cpz(Vk, Up)
p=1

Note that the cross-covarian€gz is nonstationary in the general case of unequal supports,
P # B or different sampling functiongg # gw. In other words, for any pair of SUPPOR, Vi
whose centroidsi, u are equidistant from a prediction locatiag,Cpz(Vk, Uy) # Coz(Vik, Uy ),
and the cross-covarian€; is stationary only for fixed supports and a constant sampling
function. For a complete exposition to geostatistical area-to-point prediction, see Kyriakidis
(2004).

2.1 Kriging as a nonlinear optimization problem

Kriging is a family of generalized linear regression algorithms so that all variants of Kriging
predictors can be expressed as a basic linear regression estimator: the sum of the mean and the
weighted linear combination of residuals. The residuals are weighted by Kriging weights which
are determined so that they minimize the prediction error variance subject to unbiasedness
constraints (Isaaks and Srivastava, 1989; Journel and Huijbregts, 1978). Interestingly enough,
however, the method of Kriging has been studied not only in regression and geostatistics, but also
in the field of optimization by Luenberger (1969) whose complete theory of a vectorial approach
to optimization applies to the Kriging system of equations as a special case (Olea, 1999).

In the following section, the primal form of area-to-point ordinary Kriging (OK) prediction is
reviewed from the perspective of an optimization problem, and one of its variants, a bounded
ordinary Kriging (BOK) subject to inequality constraints, is discussed.

2.1.1 Area-to-point Kriging subject to equality constraints only

Let Z be an intrinsic RF, where the meansfs assumed to be constant but unknown over the
study domairA. The point prediction at locatiomy, using the K x 1) vectord = [d(v1),...,
d(vk )]’ of areal data, is given as:

K K K R
2up) = M(up)d(vi) = Aw(up)d(Vi) +mz {1— > > gk(Up)Ak(Up)}

K=1 K=1 K=1p=1



= I ml[]=Ad VupeA ®

subject to:

K R

Y Y ok(Up)hk(up) =AGl=1, VupeA

k=1p=1
whereAg(up) is the OK weight assigned to theth areal datum for the prediction at locatiop,
andmyz is an unknown but constant mean filtered from the linear predictor by forcing the Kriging
weights to sum to 1. Since the mean of #ath areal RVmp (v) is a linear function of the mean
of point support values via a sampling functiggup), the weighted mean of the areal RVs is
expressed as a double weighted combination of the mean of point RVs, and is written as:
S ko1 A(Up)Mo (Vi) = i1 3 0 1 Ok(Up)Ak(Up)Mz. I matrix notationAp denotes ak x 1)
vector of OK weights for th& areal dataG is a K x P) matrix of sampling functions, antlis a
(P x 1) vector of ones.
The Kriging weights are determined by minimizing the prediction error variance subject to the
unbiasedness constraint on the weights. Therefore, the problem of area-to-point OK prediction
can be restated as the problem of “findigveightsA , minimizing Var{Z(up) — Z(up)} subject
to linear constraints” of the following form:

Min  6®(up) = Cz(0) + N,CoAp — 2\ )¢5,

subject to

AN Gl=1
whereCz(0) denotes the “a priori” variance of the point support fHu), u € A}, andCp and
cb, are a(K x K) matrix of covariances among tieareal supports and@ x 1) vector of
cross-covariances between tereal supports and the prediction locatigy respectively. This
problem is classically solved by converting the constrained minimization problem into an
unconstrained one using the method of Lagrange multipliersé beta Lagrange multiplier, then
the Lagrange function for area-to-point OK is written as:

L(Ap.&) = N,CpAp—2Nch, + 28(N,G1—1) (2)

The Lagrange function in Equation (2) is a quadratic expression in the unknown OK weights, and
the constraint on the weights is linear. In such a case, the necessary and sufficient condition to
have a unique global minimum is thh@,CD)\p > 0, which is already satisfied by the positive

definite condition orCp (Olea, 1999). The unconstrained minimum variance problem in Equation
(2) is obtained by equating the partial derivatives of the Lagrange function to zero, as follows:

10L(Np,&)

2 0Ap
10L(Ap,&)
2 9

= CDAp—ng‘i‘EGl:O
=A,G1-1=1G\,-1=0

This yields a system diK + 1) linear equations witkiK + 1) unknowns. The solution of this
system provides the optimal weiglkg for area-to-point prediction. In matrix notation, the OK

5



system of equations becomes:
Co GL][Ap] [ch,
e SR @
2.1.2 Area-to-point Kriging subject to inequality constraints

In this section, a simple extension of area-to-point OK prediction is considered to place the
predicted values between explicit lower and upper bounds, which is called “bounded ordinary
Kriging” (BOK). The BOK predictor incorporates the bounds into geostatistical interpolation by a
small algorithmic change and additional computing effort (Barnes and You, 1992).

Consider again the task of predicting the attribute value apittelocation using th& areal data,

but subject to the additional constraint€apoint locations{ug, g=1,...,Q(= Q +Qu)},

where the inequality constraints consis@flower bounds an€, upper bounds. The new
constraints do not affect the form of the predictor so that OK prediction gt-thdocation is
expressed as the weighted linear combination of the areal data, as written in Equation (1).
However, the Kriging weights are altered by restricting the solution to satisfy bound constraints.
The quadratic minimizer for the BOK predictor is written as:

Min  0®(up) = Cz(0) + N,CoAp— 2A},c5;, (4)
subject to
NGl = 1, p=1,...,P
2(up) > =z, p=(P+1),....,(P+Q)
2up) < a, p=FP+a+1),....,(P+Q)

wherez andz, denote the lower and upper bound values, respectively. Due to the additional
inequality constraints, the quadratic form of the minimization problem can not be solved using the
classical Lagrange multiplier technique any more. As an alternative, the Kuhn-Tucker theorem,
that is the central theorem for all constrained nonlinear optimization (Kinzi, Tzschach and
Zehnder, 1971), can provide the necessary and sufficient conditions for a solution to the BOK
prediction®.

The application of the Kuhn-Tucker conditions to BOK yields the following Lagrange function:

L(Ap,&) = NoCoAp—2Npch, + 280(A,GL— 1) — 281 (Apd —2) + 282(\pd —2))  (5)

where = o &1 &) denotes the vector of Lagrange multipliers associated with unbiasedness
and lower and upper bound constraints, respectively. Solving Equation (5) for the Kriging
weightsA, and the Lagrange multiplie€y, &1, &2, we can derive the following system of

equations (Barnes and You, 1992):

OL(Ap, &)

= = CpAp—CB; +&G1—&1d+&d=0 (6)
p

*When the objective function and constraints are a family of convex functions, the Kuhn-Tucker equations provide
both necessary and sufficient conditions for a global solution to the constrained minimization problem
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OL(Ap,08)

5t = A,G1-1=0 7)
A /
—"L(GEF:Q — Nd—7z>0 (8)
A /
&%{:a — G(\d—2)=0 (©)
A /
Ez%a"z’a = &Ad—2)=0 (11)
&1 > 0
& > 0

For a better understanding of the BOK system, consider a case where the BOK prediction at the
p-th location is greater than the lower bour}él,tﬂ > z) and lower than the upper bound

()\’pd < zy). Per Equations (9) and (11), the two Lagrange multipliers for the upper and lower
boundsg£; and§2, must be zero. These conditions lead the objective function Equation (5) to be
equivalent to OK prediction without inequality constraints. On the other hand, if the Lagrange
multipliers associated with inequality constraints are not equal to z&ras Q or &> > 0), per
Equations (9) and (11), the BOK predictions must equal to the bound vélgdsr(zl =0or

)\’pd —z, = 0). In words, whenever a predicted value violates a bound value, the optimal bounded
prediction in BOK is fixed to that bound value.

The same argument holds for the BOK prediction error variance. When a BOK prediction falls
between the lower and upper bounds, the corresponding BOK prediction error variance is the
same as the variance derived without inequality constraints. However, when the predicted value
violates the inequality constraints, i.e., when a predicted value is smaller than the lower bound so
that the predicted value at theth location is bounded to the lower bound value, the Kuhn-Tucker
conditions are summarized in the following matrix form:

Cpb G1 d Ap b,
G 0 0 g | =] 1 (12)
d 0 0 —&1 z

Solving the BOK system in Equation (12), the following BOK prediction error variance, denoted
asG3(Up), is derived:

Cob G1 d] '[dch,

Gaok(Up) = cz<0>nchJ’1a]!1;G’ 8 8} ! 1 ] (13)
! Z

= 85k (Up) + [2(up) —z]%/n (14)

whered?, (up) denotes the prediction error variance without inequality constraints. The
derivation of BOK prediction error variance in Equation (14) from Equation (13) requires a few
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algebraic manipulations; see Appendix | for detailed derivation. The correction term in BOK
variance is the difference between the unconstrained prediction and the bound value weighted by
n, which involves the dual Kriging weights as:

, [ Co G1]17'[d
o 2 S8 s
In words, the BOK variance is increased proportional to the discrepancy between the OK
prediction and the bound value whenever a prediction violates inequality constraints, because the
bound value is considered a known datum in the BOK prediction at the inequality constraint
point. Therefore, as the discrepancy between the OK prediction and the bound value increases,
the prediction error at locatiom, is increased as well, and vice versa.

In summary, the BOK system allows incorporating inequality constraints into area-to-point
prediction in an intuitive way with minimum computing effort, while accounting for support
differences explicitly and reporting the uncertainty of the BOK predictions. In the application of
BOK to area-to-point prediction, however, it is important to recognize that this solution is based
on a “point by point” formalism of Kriging, which implies that the bound at one location does not
affect the prediction at another location. However, it is highly expected that inequalities impact
not only the points at which they are applied to, but also their neighborhood (Dubrule and

Kostov, 1986). In consequence, the resulting area-to-point BOK prediction after considering
inequality constraints does not guarantee the areal data reproduction property (or “coherence” of
prediction) anymore. Furthermore, it is highly expected that the predicted surface may show
“clamping effect$” at the bound locations, which may cause the surface to exhibit discontinuities
often found due to a high nugget effect. In addition, the BOK system can not handle more general
inequality constraints, such as interval inequality constraintszi€.2(u) < z,.

2.2 Kriging as an interpolation problem

In a classic interpolation problem, the main objective is to find an unknown function to represent
reality without reference to the original data. Usually, this unknown function is approximated by
a parametric function whose form is postulated in advance, either explicitly or implicitly. The
parameters of the function are chosen so as to optimize some criterion of the goodness-of-fit at
data locations, which can be statistical or deterministic (Chilés and Delfiner, 1999). Recall that
the main objective of Kriging is also to reconstruct the unknown surface on the basis of values
observed at a limited number of points or areas. In this context, Kriging can be viewed as an
interpolator, although there exists a fundamental difference between Kriging and standard
interpolators, such as splines (Chiles and Delfiner, 1999; Cressie, 1990; Wahba), 1990
Interpolators focus on modeling the interpolated surface in a purely deterministic way, whereas
Kriging is concerned more about modeling the spatial phenomenon itself based on the statistical
characteristics demonstrated by the data via a data-based covariance (Chiles and

Delfiner, 1999; Cressie, 1990).

Tthe interpolation function has exactly equal values at the set of bounds



In the following section, we examine the problem of defining an interpolation function based on
the Kriging system so that inequality-type data can be more easily incorporated into the Kriging
system based on the analogy with constrained splines.

2.2.1 Area-to-point Kriging interpolator

An alternative to the primary formalism of Kriging is given by Matheron (1981) whereby the
Kriging predictor is expressed as a linear combination of covariance values weighted by the dual
Kriging coefficients, instead of a weighted combination of data values. This dual formulation has
drawn attention due to some interesting properties, such as its formal equivalence with splines
and an efficient and fast algorithm to compute Kriging predictions with a unique neighborhood
(Chiles and Delfiner, 1999; Galli, Murillo and Thomann, 1984; Goovaerts, 1997; Royer and
Vieira, 1984). The dual formalism of ordinary Kriging (DOK) is is easily derived by rewriting the
primary form of OK in Equation (1) with the normal equations in Equation (3), and using the fact
that the inverse of covariance among areal data is symmetriddg} = Cp*:

i , A , Co G1]'[cP
Aup) = [d° Of b ]=[d 0][1/8/ 0} {[{Z]
= [of ao][c'%z]:w’cgﬁao, Vup€eA
K
= > w(Vi)Cpz(Vk,Up) + ao (16)
k=1

where a K x 1) vector of DOK weights is denoted as= [w(w),k=1...,K]’. Note that thek-th
DOK weightw(vk) depends on thie-th areal datuna(v) not on the prediction locationy, so that
the set of DOK weightsd does not need to be recomputed for every prediction location, as is the
case with the primal Kriging weigh®s,. This implies that the DOK prediction in Equation (16)
appears as a deterministic function of the prediction locatigrsince the predicted value at a
location is obtained by plugging the distance vetter |up — u|,u € v into the prediction

function whose coefficients are already determined. In similar cordgid,also a location-free
DOK coefficient, corresponding to the constant but unknown mean in the primary form of OK.
From this point of view, DOK formalism in Equation (16) can be easily generalized to Kriging
with a trend modef, where the mean component is modeled as a linear combination of drift
functions.

The coefficients of DOK interpolator, denoted@sndag, are derived per solution of the
following DOK system, which ensures exact data reproduction and unbiasédness

Co G1 W | d

1G" 0 al| |0
On the other hand, interpolation problems are solved by restricting the postulated functionals to
meet some criteria, such as equality constraints where the interpolation function should pass

*see Appendix Il for the dual Kriging with a trend model

8Consider the case where all thé areal data are equally correlated with the unknown value, written as
Coz(Vk,Up) = Cpz(Vi,Up) = C, V¥ k=1,...,K. Then,2(up) = cTK_; () + &, and the unbiasedness condition,
Z(up) = mz = ag, leads to the following relationshing:1 w(vk) = 0 (Goovaerts, 1997).
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through the data or inequality constraints where the postulated function should be within a
constraint interval. For example, the “thin-plate splines”, one of the most commonly used
interpolators, are derived by coefficients which minimize the bending energy of a thin plate, while
honoring all the data values. The extended version of this smoothing spline, what is called
“constrained spline problems”, can be also solved in the framework of spline theory by
minimizing various objective functions (Dubrule and Kostov, 1986; Galli et al., 1984; Kostov and
Dubrule, 1986; Wong, 1980).

2.2.2 Constrained thin-plate splines

We review solutions for thin-plate splines and their generalized form subject to inequality
constraints with regards to area-to-point Kriging. Since dual Kriging is identical in form to the
equations used for obtaining smoothing splines (Dubrule, 1983; Matheron, 1981; Wahha), 1990
the solution to the problem of constrained smoothing splines can be applied to the constrained
area-to-point Kriging prediction. Consider the following common data model for thin-plate
splines and Kriging:

z(uy) = 6(u) +&(ux)

wherez(ug) denotes thé&-th point support datum at locatiary amongK supports, denoted as
[z(uk), k=1,...,K], andB(uk) represents an unknown smooth function in the case of splines
(Hutchinson and Gessler, 1994) and the noise-filtered linear model of regionalization in Kriging
(Wackernagel, 2003). Spatially uncorrelated errors in the data model are denetaed)atn

spline theory, the smooth functidhs estimated by minimizing the following expression

(Wahba, 1990) :

K

Min S {z(uk) - 8(uk)}2 +pIR(6) (17)
k=1

with a smoothing parameter, denotedog® > 0), and a penalty functioqﬁ‘](é), which measures
roughness of therth degree derivatives & in ad-dimensional spacB®. For example, the
penalty function for the thin-plate spline in one-djrensional siflds J(®) = 216" (u))%du,

and in two-dimensional spaé®, becomes3(8) = [8”(u)]?du, whered" denotes the second
derivative of a smooth functio®.

Duchon (1977) showed that the unique solution to the minimization problem in Equation (17)
exists for a set oM low-order monomials with the following explicit expression:

R M K
B(u) = Zoamfm(U)+kZ b Y(u, ug) (18)
m= =1

wherefm(u) are low-order polynomials corresponding to the drift functions in Kriging, énd

is a set of parametric functionals, which is equivalent to the variogram when it is replaced with a
generalized covariance of an intrinsic RF (Chilés and Delfiner, 1999; Cressie, 1993; Dubrule and
Kostov, 1986). For example, in one-dimensional sgaker(u, uy) = Y(|h|) = |h[3, in
two-dimensional spade?, Y(u,ux) = Y{(|h|) = |h|?log(|h|), where|h| denotes the distance

betweeru andug. The thin-plate spline coefficients, denoted{lay,, m=0,...,M} and
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{bx,k=1,...,K} in Equation (18), are obtained by solving a linear system of ofille+ 1) with
highly optimized computation procedures (Hutchinson and Gessler, 1994).

Let's extend the scope of the discussion from the standard thin-plate splines to the constrained
thin-plate splines. By using an alternative mathematical formalism, we can arrive at the same
result for the minimization, as well as incorporate additional constraints, such as inequality
conditions or boundary value conditions, to the basic spline formulation.

Consider two normed linear spacesf X and Y, denoted ag X ||? and|| Y ||? with abounded
linear operator!l T onX toY, where|| || is the ordinary Euclidean-space norm (Dubrule and
Kostov, 1986; Luenberger, 1969; Prenter, 1975; Wahba,d99®en, a smooth spline function,
denoted aé(u), can be defined by minimizing the norm @fvith a bounded linear operator,
denoted ag T8 ||%, subject to given constraints, as shown in the following formulation:

Min J4(8) =|| T6 |2 (19)

(uk) > 7, :(K+1)v""(K+Q>

Note that the penalty function in Equation (19) is characterized by the minimum norm problem in
Hilbert space (Luenberger, 1969; Prenter, 1975; Wahba,d990

~ L K+Q
ITO|P=<TB,TO>= 3 bib(ux) VOeX (20)

where< - ,- > denotes the inner product of two vectors.
Therefore, the penalty function in the Equation (19) is reformulated, by plugging the extended
definition of splines in Equation (18) into the Equation (20), as follows:

K+Q K+Q

) K+Q
IT8%= Z bid(uk) = Z bk{ z am fm(Uk) + z b Y Uk,Uk/)} (21)

where the set oM low-order monomials, denotefy,, is selected among the basis function of the
kernel of the bounded linear operab(Wahba, 1998). Therefore, the inner product between
T6 and the basis functions always becomes zero. For example, the inner product with a
polynomial of degree 2 il results in the following relationships:

K+Q K+Q K+Q

bl = bx = byy=10
24T 2, e 2 b

In summary, a constrained thin-plate smoothing spline is characterized by the coefficients
{b,k=1,...,(K+Q)} which minimize the following quadratic penalty function:

Ta linear spaRce in which we can assign a notion of lerigdh to each vectox in X, where the usual norm is
assumed|x||2 =" 2x2dx

la bounded Ilnear operator implies that there exists a constaftwith the property thaff Tx||< c|| x| for each
x € X, which maps a variabl¥ to Y, (Prenter, 1975)
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K+QK+Q
Min % biby Y{U, Uy ) (22)
k=1 K'=1

subject to

é(uk) = %, Kk 1,...,K
B(u) > z, k=(K+1),...,(K+Q)

2.2.3 Constrained area-to-point prediction

In the previous two sections, we considered Kriging as an interpolator and reviewed a solution to
a constrained thin-plate spline interpolator. The coefficients of constrained thin-plate splines are
determined by finding a unique minimizer of the quadratic form of Equation (22), and then
constraining the minimization problem via equality and inequality constraints. In two papers
Dubrule and Kostov (1986), Kostov and Dubrule (1986), they developed a method for constrained
point-to-point Kriging prediction on the analogy of dual Kriging formalism with splines. In
essence, the algorithm replaces the strongest inequality data, which violate some inequality
constraints when the initial prediction using only areal data is evaluated against bound values, so
that all the other constraints are automatically satisfied (Kostov and Dubrule, 1986). This is very
similar to one of the widely used non-linear optimization techniques, termed “active set methods”
(Chiles and Delfiner, 1999).

In this section, we generalize Kostov and Dubrule’s approach to area-to-point Kriging, which
minimizes the clamping effect of prediction and handles various inequality constraints, while
taking into consideration support differences between available data and sought-after predictions.
To illustrate this method, consider the same task of predicting the attribute value at lagation

with a constant meamyz, over the study domaiA. The prediction is written as in Equation (16)

by substituting the coefficier with the constant meam;. Without considering inequality
constraints, the coefficients of dual simple Kriging (DSK) interpolator are derived by solving the
following system:

Cow=rp

whererp denotes gK x 1) vector of the residuals of the areal data from their mean, written as

rp = (d —mp). In the case of constrained DSK, however, the coefficients can be chosen to
minimize the following penalty function subject to both equality and inequality constraints, based
on the analogy with the spline formalism. Consi#eequality constraints an@ inequality

constraints consisting @, lower bounds an@, upper bounds, where the quadratic minimizer is
written as:

| K K K+Q K+Q
Min - W(Vi) (Ve )Co (Vi Vie) + (i) w(Ue )Cz (Ui, Uie) (23)
=1 & TR e

subject to
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Y aup)2(up) = d(w), k=1,...K

(K+1)7"'7(K+QI)
(K+Q+1),...,(K+Q)

N>
—~
c
=~
SN—
IN 1V

7, K
z, k

In the constrained area-to-point prediction, the quadratic minimizer in Equation (22) is extended
to the form of Equation (23) to take into account support differences by distinguishitgBReK
weights for the areal data from tl@DSK weights for the inequality constraints, respectively.

The same concept applies to the constraints, wherK thguality constraints pertain to the
reproduction of areal data, whereas @é@equality constraints pertain to point support

predictions directly.

In matrix notation, the objective function of Equation (23) is rewritten as:

1
Min EwIJrC-Fw-I—

1 Co Cpbz Cpgz Wp
= Min 3 [Wp « ]| Czp Cz Czz, wyz, (24)
Czp Czz Cgz Wz,

subject to
(a) equality condition

wp wWp
G[CzpCzzCzz, || wz | =[CpCbzConz || Wz | =rD (25)
Wz, wyz,

(b) inequality condition

—Czp —Cz —-Czz, } o < { g } (26)

Wz
C C C ! r
zp Czz Z Wy, u

where theg(K + Q) x 1 vector of unknown coefficients, denotedcas, consists of the weights for
theK areal data and the weights for tQanequality constraints, and is written as:

W, =y o o] The(K+Q) x (K+ Q) covariance matrix, denoted s, is a matrix
consisting of the areal data covarian€ks and cross-covariances between any areal datum and
the lower and upper bound inequality constraints, denote@ms,andCpz,, respectively. Note
that the quadratic minimization problem in Equation (23) has a unique solution dDlyig
symmetric, and positive-definite.

Recall that the areal data are equivalent to the convolution of unknown (or predicted) values via a
sampling functiorgk(up), which is noted by the multiplication of th& x P) matrix of sampling
functionsG and the(P x 1) vector of DSK prediction& in matrix notation:d = Gz. The

exactitude property of area-to-point Kriging is treatedasquality constraints as shown in
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Equation (25). Alternatively, this relation can be represented by the weighted combination of
cross-covariances between the areal data and all consti@iftSpz Cpz,|, based upon the
associativity of matrix multiplication, i.6GCzp = Cp, GCzz = Cpz, GCzz, = Cpz,.

Inequality constraints can be summarized in a matrix, as shown in Equation (26), by alternating
the sign ofQ; lower bound and), upper bound constraints.

In terms of representation, on the other hand, the constrained area-to-point prediction is
considered as a special case of linearly constrained optimization problems, in particular,
“Quadratic Programming (QP) problems”, which occurs when the objective function is the
guadratic form of a constant vector and a constant symmetric matrix (Gill, Murray and

Wright, 1981). For efficient computation, we can apply the concept of duality to quadratic
problems, since it is known that if a solution to either the primal or dual form of an optimization
problem exists and is finite, then a solution to the other problem also exists (Dorn, 1960). These
relationships prove to be extremely useful in a variety of ways. For example, the restatement of
the primary form of Equation (24) into the dual form can be directly solved to identify an optimal
solution to the primary problem, because it is the number of constraints rather than the number of
variables of the QP that affect the computational effort (Hillier and Lieberman, 2001). The dual
form of the objective function in Equation (23) is reexpressed as follows (see Appendix Il for a
detailed derivation):

K K K+Q K+Q
Min Z Z [(A)(Vk)(O(Vk/)CD (Vk,Vk/> — rD(Vk>0)(Vk)] + z Z [(A)(Uk)(x)(uk/)CZ(Uk, Uk/) — I’(Uk)(L)(Uk)]
K=1k=1 k=K1K =K +1 e

subject to

k=(K+1),...,(K+Q)

w(Uk) 0,
0, k=(K+Q+1),...,(K+Q +Qu)

w(Uk)

IN 1V

where thek-th equality constraint applies to theth areal datum residual, written as

ro(vk) = d(w) — mp(Vvk), whereas the-th inequality constraint applies to the locatiogn where
{r(ug) =2 —mz, k= (K+1),...,(K+Q)} for lower bounds andr (ux) = z,—mz, k=

(K+Q +1),...,(K+Q)} for upper bounds. Note that this simple conversion of the primary
form of constrained area-to-point prediction problem into the dual form reduces the number of
constraints fromK + Q) to Q. In matrix notation, the dual form of the minimization problem can
be simplified in terms of constraints, which is written as:

Min o/, C L} —riw, (28)
Co Cpz Cpgz wp wp

- [(0{3 w,Z| w/Zu] CZ|D CZ| CZ|Zu 102 - [rb I’; r{J] Wz, (29)
Czp Czz Cgz 0z, Wz,

subject to



where the bound values for equality and inequality constraints;atdd’ z; z5]' — my.

Although a number of interesting optimization problems can be resolved analytically, as shown in
the BOK system using the Kuhn-Tucker theorem, almost all major algorithms for QP problems
are iterative methods, such as “primal-dual active set methods” (Luenberger, 1969). Active set
methods, or “projection methods”, are very common for handling constraints via a descent
method, in which the direction of descent is chosen to decrease the cost functional and to remain
within the constraint region. These methods find an initial feasible solution by first solving a
linear programming problem. If the initial guess is not feasible, a new active set is determined,
and the process is iterated until the optimal solution is obtained. Therefore, in the application of
constrained area-to-point prediction, these algorithms pick a subset of inequality constraints
which satisfies all constraints automatically (Gill et al., 1981).

Based on the understanding of active set methods, we derive the associated constrained
area-to-point prediction error variance. Recall that the algorithms for QP problems pick a subset
of inequality constraints, while automatically satisfying the entire set of inequality constraints.
The selected inequality constraint points are considered as data for the second phase of the
area-to-point prediction, while the other inequality constraints do not affect prediction. If we can
distinguish which inequality constraints are picked, the prediction error variance can be obtained
using the areal data and the subset of inequality constraints chosen by the QP solution, since the
variance is a sole function of support configuration. {igt, k=1,...,S} be a subset of

inequality constraints chosen from the QP soluti8r<(Q). Then, the prediction error variance
02(up) at locationuy, is written as:

02(up) = Cz(0) — [cB,]'Cplch, — [cB) Cs ek, (30)

whereCsis a (Sx S matrix of covariances among the subset of inequality constraint points, and
cgz denotes $x 1) vector of cross-covariances between the subset of inequality constraints and
the prediction locatiomip,.

Consider the case where global constraints are imposed at all the prediction locations over the
study domaim, due to the very definition of the variable; for example, population density or
mineral grades, are positive over the entire study region. Unfortunately, it is very difficult to
handle global constraints in area-to-point prediction, because the QP solution should be sought
after for all the areal data and the entire set of prediction locations, which requires a large amount
of computation. Therefore, we can conclude that global constraints can be imposed almost
everywhere in theory, but not everywhere in practice. As an alternative, we propose a two phase
approach to handle global constraints, whereby inequality constraints are enforced only to those
point locations for which the initial predictions do not honor the lower or upper bound
constraints. The two stage prediction is performed through the following three steps: (i) initial
area-to-point Kriging prediction using only areal data, (ii) predicted point values are evaluated
against bound values; if there exists any areal support in which any point prediction violates
inequality constraints, all the points inside the selected areal support are placed to the subset of
inequality constraints, (iii) a QP problem subject to equality and inequality constraints is sought
after to get the DSK weights; if a solution exists, constrained area-to-point prediction is
performed, and the predicted values of all the points inside the violating areal support are updated
by new predictions. Otherwise, the inequality constraints can not be imposed to the current
configuration, and the initial unconstrained prediction is returned.
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3 Case study

In the case study, we demonstrate the application of various local and global constraints to
synthetic data sets. Local constraints mixed with upper, lower, and two-sided interval constraints
are assigned to a line transect data set (see Dubrule and Kostov (1986)), whereas global
constraints, i.e., non-negativity, are enforced to entire simulated 2D surface. In both cases, we
suppose that areal data are averages of the unknown point support values in any support.

3.1 Area-to-point prediction subject to local constraints

Consider a one-dimensional data set with 9 area-averageddiatg, k= 1,...,9} with support
size|v| = 4, which are assumed to be the convolution results of point values via a simple
normalized indicator functiorg(up) = 1/|w|). From now on, the 9 areal data are treated as
equality constraints, whereas 12 lower bounds and 6 upper bounds are considered as inequality
constraints. Also, note that two points at locatigns= 8,12} have two-sided inequality

constraints. The expected value of point support is assumedi®586and, a generalized

Cauchy model, which is very regular near the origin, is used for the point support semivariogram:

V) = Ya(Ih)) = C2(0) [1- (1. (T2 (31)

with varianceCz(0) = 1, and practical range (distance at which 95% of the model sill is reached)

4 distance units.

In the case study of local constraints, 4 different area-to-point prediction results are compared: (i)
unconstrained prediction using only areal data, (ii) unconstrained prediction with areal data and a
subset of inequality constraints whose initial predictions violate inequality constraints, (iii)
bounded simple Kriging (BSK) prediction (see section 2.1.2), (iv) constrained DSK prediction via
the QP solution (see section 2.2.3).

The unconstrained area-to-point prediction using only areal data is shown in Figure 1A, and the
associated prediction error variance in Figure 1B. The initial unconstrained predictions violate 11
inequality constraints including one interval constraint at locatien8. The prediction error
variances in Figure 1B show the minimum variance at the center of areal supports, and the
maximum error variance at the point locatior= 16 whose distance is far from the areal data. In
Figure 1C, unconstrained area-to-point predictions usin@ tireal data and thel violated

inequality constraints are shown, where the violated inequality constraints are replaced by their
bound values, and they are treated as known data in the second stage of prediction. In the case of
two-sided interval constraints, for example, at locatioa 8, an arbitrary decision is made to

replace the inequality constraint by one of the bound values. By treating inequality constraints as
known data, the overall prediction error variances in Figure 1D are significantly reduced, and the
predictions look realistic. However, note that the two stage unconstrained area-to-point
predictions in Figure 1C no longer satisfy some inequality constraints whose initial prediction in
Figure 1A was met, e.g., the two-sided interval constraints at locatieri 2, lower bounds at

u = 16,18 46, and upper bounds at= 36. As an alternative approach to the two stage method,
BSK is used and the resulting predictions are shown in Figure 1E. The BSK predictions are
almost identical to the unconstrained predictions in Figure 1A except the locations where
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inequality constraints are not met in the unconstrained prediction. The Kuhn-Tucker conditions
are applied only to this subset of inequality constraints, by binding the violated initial predictions
to bound values. The associated BSK variance is also shown in Figure 1F, where the variance
jumps only at locations where the initial prediction violates inequality constraints. As a result, all
the inequality constraints are satisfied and the uncertainties of prediction are reported. In the BSK
variance, locations where bound values are fixed to the BSK predictions get increased prediction
error variance than the unconstrained variance as a sort of penalty for assuming the bound value
as known data. However, it should be noted that this approach does not guarantee the
reproduction of areal data, since the BSK approach is based on “the point by point formalism” of
Kriging, there is no compensation for the change of initial prediction in the point-to-point
formalism. Since other discretized points inside the areal data are not affected by the change of
predictions to bounds. In addition, the abrupt changes or discontinuities in both prediction and
prediction error variance are unavoidable in the BSK approach. Figure 1G and H shows the
constrained area-to-point predictions and associated prediction error variances obtained via the
QP solution. The predictions in Figure 1G honor both equality and inequality constraints, while
providing a smooth profile. As we can see from the prediction result in Figure 1G, only a subset
of inequality constraints rather than the entire inequality constraints, which is strong enough to
meet all other constraints automatically must be picked from the QP algorithm. For the
application of local constraints, the solution needs to be obtained only once subject to both
equality and inequality constraints, although the prediction variances need to be computed
separately after the QP solutions are obtained.

3.2 Area-to-point prediction subject to global constraints

Global constraints, such as “non-negativity” of population density surface or “sum to a constant”
of data expressed as fractions or percentages, are often enforced due to the very definition of
variables. In the following section, we consider area-to-point predictions subject to the
non-negativity global constraints imposed over all the prediction locations in the studé.area

The areal data are defined on a (7x7) grid with cell size (3x3), and they are derived from the
simulated point support reference data whose expected value is 1, and the following generalized
Cauchy point semivariogram model with anisotropy is used for the spatial structure:

Plesyo , ([Mass2)-05 (32)

with varianceCz(0), rangeyss = 3 distance units along azimu#t%°®, andy; 35 = 5 distance units
alongl135°.

The areal data are derived from the simulated point reference values via a simple normalization
indicator function, and the values are in the range betvdesamd3. Figure 2A shows the

minimum values of areal data are clustered in the northern east of the study area. The
unconstrained predictions at locatiofis,, p= 1,...,441} using the 49 areal data are shown in
Figure 2B, which contains 13 negative values. When the BSK approach is applied to the global
constrained area-to-point prediction, we select areal data whose discretized points have at least
one negative predicted values from unconstrained area-to-point prediction. The Kuhn-Tucker
conditions are applied to all the discretized points by replacing their predictions by bound values

yz(h) =Cz(0) | 1— (1+(
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(see Figure 2C), whereas the prediction is identical to the initial point prediction where the initial
prediction meets between inequality constraints. The BSK prediction error variance, which
increases proportional to the difference between the bound value and the initial prediction, where
inequality constraints are violated, are shown in Figure 2D. Slight increase in the northern east of
study area are noticeable. In 2D example, the clamping effect is more evident, which prevents the
use of BSK approach from general mapping applications. Also, it is easily inferred that the areal
support data where Kuhn-Tucker conditions are applied do not reproduce the areal data anymore
by the correction. Figure 2E and 2F shows the results when a two phase approach is applied to
handle global inequality constraint via a constrained DSK. The unconstrained area-to-point
prediction is evaluated against global non-negativity constraints, and determine the areal supports
which contain more than one negative point prediction. In the second phase, the QP problem is
constructed using th49 areal data and the discretized point supports which belong to the selected
areal supports. In the formalism of the QP problem, the support differences are explicitly
accounted for, and the optimal solution yields the DSK weights as well as identifies the subset of
inequality constraints which are active, if a solution exists. The results are shown in Figure 2E.
The associated variance are obtained by the areal supports and the active inequality point
supports, which were identified by the QP solution.

4 Conclusion

“Inequality-type data”, or “inequality constraints”, often provide useful information to refine
area-to-point prediction. Due to the incompatible properties of measurements and inequality-type
data, special care should be taken to incorporate inequality constraints into area-to-point
prediction. In this paper, we have adopted two geostatistical methods to deal with inequality
constraints within the context of area-to-point prediction. In both approaches, constraints are
imposed on the predictions rather than on the Kriging weights, but the approaches differ in terms
of the choice of Kriging formalism. The first approach, called “bounded Kriging”, is based on
non-linear optimization solution, whereby Kriging is solved by minimizing prediction error
variance, whose objective function is represented via a non-linear form. The second approach is
developed based on the analogy of dual Kriging formalism with spline. Bounded Kriging is
intuitive and easy to implement, although abrupt discontinuities to locations where unconstrained
predictions violate inequality constraints are unavoidable. In addition, the critical drawback in the
application of bounded Kriging to area-to-point prediction is that it does not reproduce the areal
data. Hence, this approach is not recommended for the task of generating a smooth prediction
surface nor general area-to-point prediction problems, where the coherence property of
predictions is important. We also pointed out that this approach is limited only to the case where
one-side inequalities are imposed, whereas the other approach is more flexible in many aspects. It
is well-known that dual formalism of Kriging allows connecting Kriging to splines or other
deterministic interpolation functions so that constrained thin-plate splines can be generalized to
constrained area-to-point prediction. Based on the fact that the objective function of constrained
splines or constrained area-to-point prediction takes the quadratic form subject to equality and
inequality constraints, we demonstrated that QP algorithms resolve constrained area-to-point
prediction in some cases. In contrast to other approaches, the constrained area-to-point prediction
approach takes into account support differences explicitly and produces a smooth surface which
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satisfies inequality constraints at the same time. The assessment of the uncertainty in prediction is
provided via prediction error variances, which were derived from “active set methods”.

In the case studies, we demonstrated the application of local constraints where general constraints
on minimum or maximum bounds, including two-sided interval constraints, are forced to some
locations. We also demonstrated how to derive point predictions when global constraints, in
particular, non-negativity of the predicted surface, are imposed to synthetic 2D data. In both
cases, we compare the resulting predicted point values using several criteria, such as the
consideration of support differences, the smoothness of the predicted surface, and the satisfaction
of inequality constraints. In summary, the constrained area-to-point approach via the QP
algorithm is the most flexible and precise method to handle inequality constraints, although there
are potential problems of clamping effects, the existence of feasible solutions, and computing
capacity. In particular, when global constraints are imposed, more careful consideration for large
data sets is required. In this paper, we propose a selective application of the QP algorithm, which
satisfies all the inequality constraints, while reducing computing effort. Furthermore, the feasible
solution is not always guaranteed to be obtained, since the QP solution is sensitive to the choice
of the point support covariance model.

In future work, we will focus on: (i) exploring alternative methods to relax the limitation of the

finite number of constraints, i.e., a two-phase approach, (ii) developing more efficient
computational algorithms to characterize uncertainty of predictions, (iii) accounting for
non-Gaussian data, (iv) considering mixed constraints with several variables, and (v) applying the
proposed methods to real data sets.
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A: Area—to—point prediction using areal data only B: Unconstrained prediction error variance

m

0.

(4]

1l ﬂmhxmm mx mmw ﬂWh M@HWT JWWM J

0 10 20 30 40 50

o

D: Prediction error variance

Oli mﬂwmﬁwwm
O.zoh xﬁﬁh JWMWH H ijT ﬂmm r@r ﬂmgﬂ@x J%Wh xLO
0 | ii 3 20 50 02oT T fﬂmﬁ ﬁi vl . 50

Figure 1: A: Unconstrained area-to-point prediction, wheékxedenotes a lower bound and denotes an

upper bound. The width of rectangle represents the support of areal data, whereas their height represents
their attribute valueB: Prediction error variance of initial unconstrained predictidg®isTwo stage area-to-

point predictions using areal data and a subset of inequality data whose initial predictions violate inequality
constraints.D: Two stage area-to-point prediction error varianEe.Bounded simple Kriging prediction.

F: Bounded simple Kriging prediction error variancés. Constrained area-to-point DSK predictioA:
Constrained area-to-point DSK prediction error variances.
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A: Areal support data B: Unconstrained predictions using only areal data
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Figure 2: A: Synthetic areal support datd: Unconstrained area-to-point predictions using only areal
data. C: Bounded simple Kriging predictionD: Bounded simple Kriging prediction error varianci:
Two-phase constrained DSK area-to-point predictibn.Constrained DSK area-to-point prediction error
variance
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APPENDIX I. Derivation of bounded ordinary Kriging (BOK) variance

Let C be an(K + 2) x (K +2) matrix that is partitioned as follows:

Cpb 1|d

c=| 1 olo]|= [ Cn Clz} (33)
7 000 Ca Cax2
whereCq1 = [ Ci'? Cl)},Clzz { g ],Czlz [d’ 0], andC2, = [0].

We assume that the inverse®fexists, denoted 881 =B = { Bi1 Bia } )

B21 B2
LetK be the K +2) x 1 vector, consisting of the covariance between areal data and unknowns,
the sum of Lagrange multipliers, and the lower bound value, which can be partitioned as:

Cp
v | 1 :[\;o] (34)

Z

Then, the BOK variance in Equation (13) is rewritten as

Bi11 Bi2 } [ Vo

880k (Up) =Cz(0) — Vg 2] { Boi Bop . 1 =Cz(0)—[VB11Vo+2zB21Vo+VB12z +2B227]

According to thePartitioned Matrix LemmgMeyer, 2000), the inverse matrix &f, denoted (:B?)
can be summarized as follows, since; andBy» are both nonsingular:

® Byo=[Cp— C21C1{C12) 1 =[0—C1C 1 C1o ™t = —[C21C{C1 1

e Bip=—C{C12[Cop— C21CC12] 1 = —~C{'C12B22

e By = —522(3210]11

e By1=Cp{ +CiC12B22C1Cyi

Letn= [C21CI11C12], and recall that predicted value at the locatigyis represented by
2(up) = VHC1iC12. The BOK variance in Equation (35) is rewritten as:
Gok(Up) = Cz(0) ~VoB1iVo+2C21Cy3Von * +VoCiiCrazn~ —Zn~"
= Cz(0) - VoB1iVo+[222(up) ~ZIn "
= Cz(0) —V(CiiVo+ [Vo{C1{C12C21C 7 Vo +222(up) — FIn*
= G5 (Up) + [2(up)® — 22 2(up) +ZFIn~" = 68 (Up) +{2(up) —z}°n "

whered?, (up) denotes the unconstrained prediction error variance at locagion

22



APPENDIX Il. Dual Kriging with a trend model

Recall the general form of dual Kriging, which is represented by a linear combination of the
cross-covariances between prediction locations and areal data, denogeg asd the drift
functionalsff. The point prediction at locatiom, usingK areal data is written as:

K M

Zup) = W(W)Cpz(Vk,Up)+ Y amfm(up) (36)
k=1 m=0

p
= [0 a) B =B, rafh, upcA
m

with <

> w(vi) fm(u) =0, m=0,...,M

k=1
wherew denotes &K x 1) vector of the coefficients of the stochastic interpolator, wheagds a
(M +1) x 1 vector of trend coefficients. Note that OK is a special case of Kriging with a trend,

where the drift function is a constant as 1, |%° =1

p
o C
2(up) = [ ag][ 'iz ] = wcp; +a (37)
In the perspective of interpolation problems, dual Kriging with a trend model can be viewed as
the following problem: “find the coefficients anday, of the linear combination of5, andff, in
Equation (36), satisfying thi€ data identification an@ + 1) unbiasedness constraints”, on
which are written as:

x
~ITM =
[

©«
~

—~
c
©

SN—
N>
—~
©

SN—
|

o
—~
=~
N—
=~
Il
I
~

W(Vk) fm(uxy) = 0, m=0,....M
1

x
Il

The above weighte and coefficients, are derived by solving the following system of normal

equations:
Cpb F w d
7 o] la] o] <38>
whereF is theK x (M + 1) matrix, composed ofM + 1) low-order drift functionals, denoted as
F=I[fo ... fm], wherefp=/[fn(uk), k=1,... K]

APPENDIX Ill. Kriging as a Quadratic Programming problem

1. A classical QP problem
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QP problems involve the optimization of a quadratic objective function, subject to a number of
constraints, and can involve either a maximization or a minimization problem. Consider a
guadratic function subject to the linear inequality constraints, written as:

1
Min éx’anL f'x (39)

AxX>Db

wherex is a K x 1) vector of coefficients that minimize the objective function subject to the
inequality constraint&x > b, andC is a K x K) symmetric, positive semi-definite matrikis a

(K x 1) vector of coefficients, whered@sdenotes a@, x K) matrix of Q; constraints, ant is a

(Q x 1) vector of lower bound values, so that the solution is greater than lower bound values.
The consideration of both the dual and primal forms often provide insights about alternative
methods to derive a solution to reduce computational burden. The dual form of Equation (39) can
be written as:

1
Max — Ex’Cx+b’t
At—Cx=f
t>0 (40)

wheret is a (Q x 1) vector of Lagrange multipliers associated w@hinequality constraints.

Let’s consider a simplified version of the dual QP problem in Equation (40). Note ibat

linear combination of, as inx = C~1(A’t —f). Simply replacing by the function of, the

objective function of the dual QP problem in Equation (40) becomes the maximization problem
expressed by:

Max — %(A’t —fy)C YAt 1) +Db't
t>0

which is equivalent to the following minimization problem:

Min %(A’t —f)y/C YAt —1)—b't
t>0 (41)

The dual form of QP problems with equality constraints only also leads to the the same
minimization problem in Equation (41). The only difference between QP problems with equality
and with inequality constraints is that there is no positive constraints on the Lagrange multipliers
associated witl@), constraints in the case of equality constraints.

2. Constrained dual simple Kriging (DSK) as a QP problem

In the chapter 2.2.3, we showed the constrained DSK is equivalent to a constrained interpolator,
whose coefficients are determined so as to minimize the following quadratic objective function
subject to both equality and inequality constraints. To keep the problem simple, consider a task of
predicting the value at the locatian, usingK areal datal = [d(v4),...,d(vk)]" under lower
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bound inequality constraints only. We assume that the mean & R\known and constant as
mz. By the coherence of prediction ay lower bound inequality constraints for locations
{ug,a=1,...,Q}, the QP problem is written as:

Min 3/, C oy (42)
ArL- 0y = )
AZ'w+ > rz,

wherew, is a K + Q) x 1 vector of weights applied ti equality andQ, inequality constraints,
andC. isa(K+ Q) x (K+ Q) matrix of covariance among all the constrairis.denotes the

K x (K + Q) matrix of equality constraints, arrgh denotes the residuals of the areal data from

their mean, written asp = (d —mp). TheQ, x (K + Q) matrix of inequality constraints is

denoted a#\,, andrz represents the corresponding the residuals for the lower bounds, denoted as
rz = (ZI 1- rnZ)

The dual form of constrained DSK problem in Equation (42) is written as:

Max — %w@@m +r'y (43)
A/ll.l - C+w+ - O (44)
Y, >0 (45)

where the objective function involves a maximization problem Wih- Q) x 1 vector of
Lagrange multipliers, denoted gs= [y} 5]’, and bound values, denotedras [ri, r7]. The
new constraints for the dual form of the quadratic function in Equation (44) combines both
equality and inequality constraints in the primary form of (42). The constraints nfaig
combination of two sub-matricels = [A7 A%]’, whereA1 is aK x (K + Q) matrix of equality
constraints and; is aQ, x (K+ Q) matrix of inequality constraints. The corresponding
Lagrange multipliers for each constraint are denotegpbpndy,, respectively. Thus, Equation
(44) is a combination of the following two equations:

W -Ciw =0

2P, —Crw, =0
As shown in the case of the classical QP problem, the constrained DSK problem can be simplified
by the following steps. First, switch the objective function to a maximization problem, and note
thatw, is a function of, written asw, = C;lA/lp from Equation (44). Therefore, the

simplified version of the dual form of QP problems for constrained DSK prediction can be
reformulated as:

Max — 2 [WACHIC, [CZ'A'W] + 'y (46)
$,=>0
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LetQ* = (AerlA’), then the simplified dual form of SK maximization problem in Equation (46)
can be converted to the minimization problem:

Min %tp’Q*tp—r’qJ 47)
Y, >0

whereQ* is a(K + Q) x (K + Q) matrix of covariances involving area-to-area covariances
where equality constraints are assigned, @ngoint covariances where inequality constraints are
imposed.
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