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Abstract 
Corridor planning often falls into the domain of multiobjective evaluation. In 
this paper, we design and implement a multiobjective genetic algorithm for 
corridor location problems (MOGADOR). The new method produces a wide  
range of feasible corridor alternatives to help decision makers understand trade-
offs among competing objectives. The results suggest that the MOGADOR 
approach will outperform traditional shortest-path algorithm methods.  

 
1. Introduction 
Specifying an optimal corridor that connects an origin and destination is analogous to 
identifying a shortest-path (SP) or least-cost-path through a varying space. Many existing 
corridor location methods  in geographic information systems (GIS) and spatial decision 
support systems (SDSS) are derived from Dijkstra’s shortest-path algorithm (1959) , 
which has polynomial computational complexity and is intended to generate a single 
global optimal solution. Good corridor planning, however, often requires the participation 
of multiple stakeholders with different interests and emphases (e.g. engineering and 
environmental) and it is difficult to find a single solution that is best for all.  
 
The purpose of this paper is to elucidate important characteristics of multiobjective  
corridor location problems and to present a multiobjective genetic algorithm (MOGA) 
approach to their solution on raster surfaces. A focus is placed on the geographical 
representation of corridor selection problems and the design of the crossover and 
mutation operators used by this type of genetic algorithm (GA).  
 
The rest of the paper is organized as follows. In the next section, we review existing 
techniques for corridor alternative generation and principles of GAs. The design of the 
MOGADOR model, including the formulation of the problem, the development of a 
genetic representation and evolutionary operators, and the evaluation of solution fitness, 
is described in section 3. In section 4, we discuss the effectiveness and effic iency of 
MOGADOR based on the results of computational experiments. The paper concludes 
with some summary remarks and recommendations for further work on MOGA-based 
corridor location models. 

 
2. Background 
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In this section, existing techniques for corridor alternative generation are described and 
compared. After an evaluation of those methods , we discuss some basic concepts and 
characteristics of MOGA, and argue that MOGA is appropriate to address multiobjective 
corridor location problems. 
 
2.1. Multiobjective  Corridor Location Problems 
Multiobjective corridor location problems seek to find an optimal route, or a set of 
satisfactory routes, that link origins and destinations according to certain criteria. Such 
multiobjective decision-making problems have stimulated much research activity 
(Hopkins, 1984; Jankowski, 1995; Cheng and Li, 1997; Coello, 2000). Instead of looking 
for a global optimal solution, ill-structured corridor location problems often require the 
identification of reasonable alternatives for consideration in the decision making process, 
because of inaccuracies and errors in data collection and network representation, and 
subjectivity in land suitability score assignment. Therefore, it is important for corridor 
planners to identify a collection of possible alternatives and examine their suitability.  
 
The two existing general approaches to alternative generation are based on classical SP 
algorithms. The first approach, a shortest path analysis method (SPAM), reruns a SP 
algorithm on a set of predefined weighted combinations of multiple objectives that reflect 
the relative importance of each different criterion. The second approach is to modify a SP 
algorithm and generate alternatives iteratively. Techniques using the latter approach 
include the k -shortest path algorithm (Yen, 1971; Shier, 1979), Iterative -Penalty Method 
(Turner, 1968), Difference Maximization (Huber, 1980), and Gateway Shortest Path 
(Lombard and Church, 1993; Scaparra and Church, 2004). The main idea of those 
techniques is to penalize (or exclude) those arcs that have been used in previously found 
solutions, or to restrict shortest paths to traverse certain gateway nodes. Such techniques 
aim to generate alternatives that are different in spatial arrangement.  
 
Despite these efforts, five significant deficiencies exist in conventional SP-based corridor 
analysis and alternative generation methods: 
 

• Most existing methods depend on a calibration and weighting mechanism. Though 
this approach may be effective in some circumstances and many techniques, such as 
the Delphi and Nominal Group methods (Hobbs and Voelker, 1978) are available, 
the process of assigning suitability values to each cell on a cost surface, and 
determining an appropriate weighting scheme, is subjective and controversial.  

 
• For a complex geographical problem, the number of possible solutions is large and it 

is not easy for decision makers to discover compromises between conflicting 
objectives.  

 
• While the SPAM approach is able to generate a multiobjective trade-off curve to 

identify alternatives, it does not widely explore the solution space because the search 
is restricted by the weighting scheme used.  
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• The computation time of SPAM depends not only on the number of different 
weighting schemes, but also on the number of objectives to be examined. Running a 
SP algorithm for each possible alternative is expensive and problems become 
intractable when datasets are large and many objectives need to be evaluated 
simultaneously.  

 
• SPAM is not able to produce near-optimal solutions. The ill-structured nature of 

many spatial problems like corridor location, however, suggests the need for 
techniques that produce a wide rang of potential (optimal and near optimal) 
solutions for good decision making (Brill et al., 1990; Lai and Hopkins, 1989).  

 
Multiobjective  genetic algorithms can be used to overcome each of the deficiencies listed 
above.  
 
2.2. Multiobjective  Genetic Algorithms  
Genetic algorithms are a particular type of evolutionary algorithm initially developed by 
Holland (1975) in the early 1970s. Theoretically, they are search algorithms that aim to 
maximize (or minimize) an objective function by emulating the mechanics of natural 
selection and genetics. GAs are computationally simple , yet robust and powerful, ways to 
search for potential solutions to optimization problems (Goldberg, 1989). They are able 
to produce optimal and near optimal solutions with a limited amount of computation and 
prior knowledge of problems. This characteristic makes them especially useful for 
optimization problems that have a large and complex solution space, in which 
conventional search methods normally lack either robustness or efficiency.  
 
In GAs, each possible solution to a problem is encoded as an individual (chromosome) 
that when assembled collectively form a population. Each individual has a fitness value, 
which is usually derived from one or more objective functions and indicates how well the 
solution matches objectives. After creating an initial population, GAs run iteratively until 
a termination condition is satisfied. In each iteration (or generation), individuals with 
higher fitness values have a greater likelihood to be selected and reproduced in the 
population of the next iteration. There are three basic operators in a GA procedure: 
reproduction, crossover, and mutation. Reproduction is a process in which individuals are 
copied directly to the next generation according to their fitness values. Reproduction 
ensures that the genes of the fittest individuals are preserved across generations. 
Crossover is an exploitative method that exchanges partial genes from both parents and 
allows the combination of partial solutions to produce high-quality offspring. Mutation, 
on the other hand, is an explorative method that reintroduces genetic diversity and 
prevents premature convergence, thereby avoiding local sub-optimal traps in a solution 
space. A typical GA procedure can be described as follows: 
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/* GA Procedure( ) */ 
 i := 0 
 initialize population p(i) 
 evaluate fitness of p(i) 
 while (not termination condition) do 
  i = i + 1; 
  generate p(i) from p(i-1) 
  evaluate fitness p(i) 
 od 
 

The power of GAs for ill-structured problem solving can go beyond traditional single-
objective optimization approaches because more than one objective can be incorporated 
into their fitness function. Since many real-world problems have several competing 
objectives, multiobjective  genetic algorithms have become a popular research area and 
various MOGA methods have been developed for decision problems when multiple 
criteria are involved. A comprehensive technical summary of MOGA techniques and 
related criticism can be found in Coello’s (2000) survey paper and Deb’s (2001) book. 
More practical information about MOGA can be found in a number of independent 
implementations (e.g. Fonseca and Fleming, 1993; 1995; Srinivas and Deb, 1994; Horn, 
1997).  
 
Recent work in MOGA, motivated by Goldberg’s (1989) suggestion of non-dominated 
solutions, has concentrated on the generation of a set of promising solutions that are 
Pareto-optimal (Pareto, 1971). A solution S is said to be Pareto optimal if no other 
solution dominates it. Deb (2001) showed a simple procedure to rank all solutions in a 
population by iteratively finding the non-dominated set of solutions after omitting any 
non-dominated solutions found in previous iterations. In doing so, a population of 
solutions can be classified into groups of different levels of non-domination (Goldberg, 
1989; Deb, 1999, 2001); this procedure can replace the original objective function values 
and be applied in the fitness evaluation function of GAs. With the introduction of the 
Pareto-optimality concept and MOGA technology, decision-makers are now able to 
generate feasible alternatives that are on, or close to, the Pareto optimal front.  
 
3. A MOGA approach to corridor selection problems 
In this section, we present a MOGA approach to corridor alternative generation problems 
(MOGADOR) on raster surfaces. The discussion of the new approach covers the topics of 
land suitability data generation, the design of a network, the genetic representation of 
corridor selection problems, the development of genetic  operators, and the evaluation of 
fitness functions. A MOGA-based corridor location model will typically include these 
functionalities. 

 
3.1. Data Collection   
A fundamental step in a corridor location procedure is to translate landscapes in a study 
region into a set of suitability maps; each represents a certain criterion that must be 
evaluated by decision makers. A suitability map is usually represented using grid cells. 
Each cell is assigned a numerical score to represent its suitability for inclusion in a 
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possible route based on a particular criterion. The suitability score is often calculated 
using a weighted combination of data from different categories, including elevation, 
slope, soil type, ownership, flood plains, and land cover type.  
 
For simplicity, we rely on a set of simulated datasets to illustrate the functionality and 
validity of the MOGADOR model. Three suitability surfaces are used; each surface is a 
grid (50 x 50), representing the suitability of corridor alignment with respect to 
engineering cost (ENG), environmental impact (ENV), and economic and social benefit 
(SEO) (see Figure 1). Following previous work on corridor planning (Huber and Church, 
1985; Lombard and Church, 1993), the suitability score assigned to each cell is scaled to 
a value between 0 and 10; low scores depict high suitability and high scores depict low 
suitability with respect to each criterion [value “0” indicates complete compatibility and 
“10” indicates the lowest compatibility]. Complete exclusion of a cell is possible by 
assigning it an arbitrary high value, say “9999”. In this way, the multiobjective corridor 
selection problem could be stated as the determination of a route that simultaneously 
optimizes all three objectives (described below) using a Pareto optimal solution concept. 
 
 

     
 
 
 
 
 
          (a)            (b)       (c) 

 
Figure 1. A 5 x 5 sample dataset; (a) ENG surface; (b) ENV surface; (c) SEO surface. 

 
3.2. Design of networks 
Unlike a classic routing problem, which is based on a predefined network and can be 
solved using a SP algorithm, there are an infinite number of possible routes between an 
origin and a destination on a continuous surface. Though grid representation of a 
continuous surface simplifies the problem, its use also introduces error. Because 
continuous data is made discrete and represented as a rectangular grid network, the 
effects of cell size, the number of allowed inter-cell links, and the method of assigning 
costs to links introduce inaccuracies. Such errors and inaccuracies have been formalized 
and analyzed by several researchers (Hopkins, 1973; Goodchild, 1977; Huber and 
Church, 1985; Xu and Lathrop, 1995). Huber and Church (1985) provide a thorough 
review of the geometric distortions that occur as a consequence of grid orientation, 
proximity, elongation and deviation.  
 
A commonly used method to reduce error s between an ideal path across a continuous 
landscape and a best path on a restricted network is to increase cell connectivity at the 
expense of computational intensity. Compared with the Rook’s case (orthogonal) links 
alone, allowing Queen’s links (horizontal, vertical, and diagonal) will improve accuracy 
of distance measurement by 30% and allowing Knight’s moves (diagonal moves with a 
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1:2 or 2:1 ratio) will additionally improve  accuracy by 7%. Huber and Church (1985) 
found that allowing the knight’s move reduces the representation errors to a reasonable 
level with an acceptable network size. In this study, all three types of movement (rook, 
queen, knight) are allowed. Each cell is allowed to link to its 16 nearest neighbors, which 
approximates a continuous space with an acceptable amount of computational effort.  

 
3.3. Development of Genetic Algorithm in MOGADOR 
Problem representation is a critical issue in GA design.  Since it affects the performance 
of a GA significantly, designers must use a representational form that is suitable for a 
specific problem. In our method, a feasible corridor  alignment, represented as a 
chromosome, is a continuous sequence of positive integers (genes); each integer 
represents the IDs of nodes through which the corridor passes. Each ID refers to the 
location of a corresponding cell on a raster surface. For example, in a 5 x 5 grid surface, 
node 17 refers to the cell located at the fourth row and third column using row ordering. 
Variable-length chromosomes and their genes are used for encoding the problem. Every 
valid chromosome starts with an origin cell, ends with a destination cell, and contains a 
set of connecting links that stretches from the origin to the destination (Figure 2). A valid 
chromosome must not have duplicated nodes in the sequence, as this would indicate a 
circular path. 
 

0 1 2 3 4 

5 6 7 8 9 

10 11 12 13 14 

15 16 17 18 19 

20 21 22 23 24 
 

Figure 2. The node indexes in a 5 x 5 grid and a valid route: 0-1-2-7-12-17-22-23-24. 
 
3.3.1. Population initialization 
An initial population is generated at the beginning of the MOGADOR procedure. We 
experimented with two techniques to create a group of individuals in the population: 
random and heuristic. Traditionally, each individual in a GA is initialized randomly. In 
our case, the initiation procedure starts with an origin and randomly chooses a valid cell 
based on the topological (connectivity) information of the network. The encoding process 
keeps selecting a valid cell that can be connected to the last cell of the current route and 
has not been included in the route so far, until a destination is reached. A random walk 
alone often results in poor performance (e.g. extremely long length chromosomes and a 
large amount of computation time) when working on larger datasets. In response, a 
heuristic method, called “directionally biased walk”, has also been developed. Cells in a 
direction leading from the origin towards the destination have a higher probability to be 
selected as the next gene. The combination of random and biased walk approaches is able 
to produce a better initial population while maintaining its diversity. In our study, for 
example, 80% of the genes in each individual corridor are chosen heuristically and 20% 
are chosen randomly.  



 7 

 
3.3.2. Selection 
The selection operations in MOGADOR select chromosomes from the current population 
for reproduction, crossover, and mutation based on a probability that is proportional to 
the fitness of each individual. Two selection schemes are implemented in our model: 
roulette wheel and tournament (see Goldberg, 1989).  
 
3.3.3. Crossover 
The crossover operation in a conventional GA is based on the exchange of genes between 
two fixed length chromosomes when a bit string representation is used. In the 
MOGADOR model, variable length chromosomes are used and two crossover operators 
have been designed. The first crossover procedure, “shared node” crossover, chooses two 
parent chromosomes that may have different lengths but must have at least one gene in 
common (except for the origin and destination). The second crossover method, called 
“shared neighbor” crossover, is used when two parents have no shared nodes, but have at 
least a pair of genes (one from each parent) within a predefined proximity (e.g. 8 or 16 
neighboring cells). After crossover, the partial-routes of two parents, separated by the 
pair of genes, are exchanged and the paired “shared neighbor” genes from two parents are 
connected together and included in both child chromosomes. 
 
3.3.4. Mutation 
Mutation introduces random changes to a chromosome and thus maintains population 
diversity. It also prevents the premature convergence of the population, a phenomenon of 
convergence to non-optimal solutions due to the lack of population diversity. Two 
mutation methods are designed in MOGADOR. In the first method, called “partial” 
mutation, a gene in a parent chromosome is randomly selected as a break point. The 
mutation process will generate (using a similar procedure as for initialization) a partial-
route starting from the mutation break point to the destination. This is then combined 
with the partial-route from the origin to the break point in the parent’s chromosome to 
form a new child. A second mutation operator , called “add-drop” mutation, randomly 
selects one or more nodes (determined by parameters) from a chromosome. For each 
node, the procedure checks its connectivity and eliminates the node if a node before and 
after it is within the same neighborhood. In the same way, the “add-drop” method selects 
several nodes in a parent and inserts a valid new node before (or after) each of them.  
 
3.3.5. Fitness evaluation 
Different from single-objective GAs, in which fitness is often the objective function of 
the indicated optimization problem, in a multiobjective scenario, the fitness function of a 
GA should reflect the optimality of a solution in each of the objectives. Therefore, a 
Pareto optimum concept is adopted. The fitness value of a solution depends not upon the 
values from a single objective function, but upon its Pareto rank within the entire 
population. According to the three suitability surfaces described in the previous section, 
three objective functions are constructed; each calculates the accumulated suitability of a 
corridor alignment based on engineering, environmental, or social and economic criteria. 
In so doing, the multiobjective corridor problem can be stated as the determination of 
route alternatives that simultaneously optimize all three objectives using a Pareto non-
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inferior solution concept. Here, z(ci), z(ei) and z(si) are the suitability value of site i for 
engineering, environmental, and socio-economic criteria, respectively. 

 
• minimize Z(c) = ? z(ci), total ENG of a valid route.  
• minimize Z(e) = ? z(ei), total ENV of a valid route.  
• maximize Z(s) = ? z(si), total SEO of a valid route.  

 
The initial fitness of an individual is defined as an inverse function of its Pareto rank 
(1/rank), as suggested by Goldberg (1989). While this method effectively drives the 
solution process toward the front, it does not explicitly ensure a diverse solution set that 
expands across all portions of the trade-off curve. As a result, the GA will often converge 
to subregions along the Pareto front (Bennett et al., 2004). Two techniques, “population 
gap” (De Jong, 1975) and “niche count” (Beasley et al., 1993; Srinivas and Deb 1994), 
are used to address this problem. In population gap, a proportion of the old population is 
directly copied to the next generation without any modification. The niche count 
technique boosts the fitness of those solutions that lie sparsely along the Pareto front by 
adjusting the ir fitness according to the number of solutions within their neighborhood.  
 
4. Experimental Results and Discussion 
The MOGADOR model described above was coded in Microsoft Visual C++ 6.0 and 
tested on a Windows XP PC (Pentium 4/3.2-GHz processor with 1 GB memory). Three 
50 x 50 grids are used to test the validity and performance of the model.  

 
MOGADOR was run for 100 generations with 100 individuals. For each generation, all 
feasible solutions were reported and displayed. The results and associated parameters of 
the MOGADOR model on the sample dataset are showed in Figure 4. Black dots in the 
figure represent the solutions produced in the GA procedure. MOGADOR generated 
10000 possible corridor alignments on the 50 x 50 grid dataset in 20 seconds.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. The results and parameters of MOGADOR on the 50 x 50 grid dataset. 
 

Parameters  
---------------- 
source=0 
destination=2499 
num_objectives=2 
num_elites=10 
chrom_len=500 
popu_size=100 
maximum_gen=100 
popu_gap=0.8 
pcrossover=1.0 
pmutation=0.2 
cross_meth=0 
mutat_meth=2 
sharing_method=T 
sigma_share=0.15 
tournament_size=5 
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Parameters and strategies used in the MOGADOR location model play a significant role 
with respect to its performance and the quality of the solutions obtained. Through a set of 
experiments on the sample dataset, their effects are noted as follows: 
 

• The random initialization procedure is fast when the dataset is small. However, 
the computation time of the random initialization process increases dramatically 
as the data size grows. In our experiment, MOGADOR with a random initiation 
procedure took 340 seconds, compared with 20 seconds for biased walk, to 
generate an initial population for the 50 x 50 grid dataset.  

 
• The niche count technique increases the diversity of the population. According to 

our experiment, its effect, however, is limited. The population will expand only to 
a limited portion of the Pareto front (Figure 5 (b)). Using niche count alone, a 
well formed Pareto front is difficult to achieve.  

 
• Also from Figure 5, we found that the population generated by MOGADOR did 

not approach the grey circles (a sample of the Pareto optimal front  created using a 
traditional SP algorithm) very well. We also tested the model with a large 
population size and a large number of generations (popu_size = 5000 and 
maximum_gen  = 500) that requires a considerable amount of computation time. 
MOGADOR approaches but is not guaranteed to reach the Pareto optimal front. 
So additional knowledge is needed to guide the evolution of the population more 
efficiently. 

 

 
                  (a) Biased walk   (b) Biased walk with niche count 

 
Figure 5. The results of MOGADOR on the 50 x 50 grid with and without “niche 
count”. Solutions with objective function values less than 800 are reported. Grey 
circles indicate the Pareto optimal front defined by a shortest path algorithm.  
 

• The “partial” mutation drives a population progressively toward a trade -off curve 
on the objective space. The use of the “add-drop” mutation method, however, can 
speed up the procedure and find better solutions. Figure 6 shows the results of 
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MOGADOR with and without the “add-drop” mutation. The black line represents 
the evolution of minimum ENG values over generations when only the “partial” 
mutation is used. The grey line is the corresponding ENG values when both 
mutations are used. The latter, though, started with a relatively larger ENG value, 
decreased quickly and achieved a smaller value after the second generation.  

 

 
 

Figure 6. MOGADOR with and without the “add-drop” mutation method.  
 
The traditional SPAM approach is also able to generate a multiobjective trade-off curve. 
SPAM, however, is a NP Hard problem solving method and requires a large amount of 
computation to produce alternative solutions. The computational complexity of SPAM is 
dependent not only on the number of objectives investigated but also on the resolution of  
the weighting scheme on multiple objectives. An n-objective corridor location problem 
with a 1% objective weighting interval has 100n-1 possible weighting schemes and must 
execute a SP algorithm 100n-1 times. Consequently, the computation time of SPAM 
increases exponentially and the corridor location problem becomes intractable when the 
number of objectives exceeds five or the grid size exceeds 250 x 250. In contrast, the 
computational complexity of the MOGADOR model is much less. The entire population 
is generated by the reproduction, crossover, and mutation operation from the MOGA 
procedure. The comparison of computation time for a two and three objective corridor 
alternative generation problem is shown in Table 1. The SPAM procedure is based on a 
1% objective weighting interval.  
 

 Two objectives Three objectives 
 Time  # Solutions  Time # Solutions  

SPAM     
50 x 50 11 100 672 10000 

MOGADOR     
50 x 50 20 10000 26 10000 

 
Table 1. The computation time and solution of SPAM and MOGADOR. 
Computational time is measured in seconds. 
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5. Conclusion and Further Research 
While corridor planning often falls into the domain of multiobjective optimization, 
existing corridor location models are generally based on shortest-path algorithms and 
often search for a single global optimal solution. Though different approaches have been 
developed to generate alternative routes for decision making, those techniques still 
depend on a weighting mechanism to collapse multiple objectives into a single objective 
function and, as a consequence, they are not suitable for ill-structured corridor planning 
problems, in which trade-offs among competing objectives need to be investigated. In 
this paper, we presented and implemented a novel MOGADOR algorithm to generate 
multi-objective alternatives for corridor location problems. Using a new set of genetic 
operators, the approach captured a range of optimal and near optimal corridor solution 
alternatives. The results from our experiments demonstrate that the MOGADOR model 
significantly outperforms conventional SP-based methods both in computational 
complexity and the number of generated alternatives.  
 
The findings in this research make a contribution to GIScience-based spatial analysis in 
general, and to intelligent corridor planning models in particular. As we conducted this 
research, however, we also identified several places in which further work is needed.  
One particular problem is that while MOGADOR is able to generate a variety of 
multiobjective corridor alternatives, it is difficult for a population to reach the Pareto 
optimal front. To solve the problem, additional methods need to be investigated to guide 
evolution. One possible solution is to seed a GA with results of a SP algorithm on several 
pre-specified weight combinations.  
 
MOGADOR is also dependent on appropriate representation and problem-specific 
genetic operations. To develop a more general and problem-independent approach, 
genetic programming (GP) seems promising since it requires no constraints on 
representation and each solution is represented as a parse tree. Given a small set of  
fundamental corridor design elements (e.g. move left, move right, move up, and move 
down) and functions (e.g. get(), put(), insert(), follow()) to manipulate them, GP is able to 
create a working computer program from a high-level problem statement. 
 
Finally, natural evolution is a massively parallel search process, working on different 
species at different locations simultaneously. This concept has been recognized by 
researchers for years and many GAs implement  an island model in parallel computing 
environments (see Xiao and Armstrong 2003). A distributed and parallel version of 
MOGADOR can not only take the parallel nature of evolutionary processes into account 
but also has the potential to reduce computation times significantly.  
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