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1. Introduction  
Maximizing the capability of sited facilities to provide service to regional demand is a 
strategic goal of many location planning problems. That is, there are often constraints on 
the number of facilities that can be sited and given these limitations it is desirable to 
ensure that regional demand is served to the greatest degree possible. As an example, 
such goals are often encountered in siting bus stops, emergency warning sirens, 
surveillance systems, among others. 
 In many cases, regional demand and potential facility sites can be considered to 
be continuous, or present anywhere, in a region. For example, tornado warning sirens 
need to be audible at all locations of human activity. Further, given their relatively small 
geographic footprint, they can be sited practically anywhere. Typically, facility location 
problems like those previously mentioned entail making certain assumptions on where 
demand (e.g., population) is located and where facilities can be sited (Church and 
ReVelle 1974).  While such discretizations of space are beneficial from the standpoint of 
approaching siting problems using standard optimization techniques, representational 
issues are known to exist (Drezner and Drezner 1997, Murray et al. 2007).   
 The focus of this paper is on siting facilities in continuous space to maximally 
serve continuously distributed demand. Recently, a geometric approach addressing this 
problem given the siting of a single facility was proposed by Matisziw and Murray 
(2007).  In this paper we focus on the more general situation of siting multiple facilities 
and propose geocomputational methods for problem solution. 
 The problem of interest may be specified mathematically as: 
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where, 
 
A= total coverage area (function of selected facilities j) 
G = region 

)(Gδ  = demand function 
p = number of facilities to be sited 
Vj = service area of facility sited at j. 
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The objective of this model is to maximize the demand in region G that is suitably 

serviced (or covered).  Demand is considered covered if it is within the service area of 
sited facilities.  The number of facilities to be sited is constrained to p.  This non-linear, 
non-convex model involves integrating demand density over the area formed by the 
union of all established service areas within region G.  Thus, given a continuous 
distribution of demand across the region, the task is to determine the placement of 
facilities such that they collectively serve the maximal demand possible. 

In what follows, we review literature relevant to this research.  Next, we propose 
a geocomputational approach to solve this problem. 

2. Background 
The problem of siting facilities in support of serving regional demand can be approached 
in two basic ways: 1) siting to achieve complete regional coverage and 2) siting to 
maximize regional coverage.  The latter is the focus of this research.  Church and 
ReVelle (1974) were the first to offer a formal mathematical description of this basic 
problem, known as the Maximal Covering Location Problem (MCLP).  The MCLP is a 
mixed-integer mathematical programming model that seeks to identify the p facility sites 
that maximize demand coverage.  In this context, facilities (j) have a set service standard 
S reflecting a time/distance range within which demands (i) are considered effectively 
served (e.g. , where  is the distance between i and j and S is the maximum 
allowable service standard). Central to this problem specification is the assumption that 
demand and possible facility sites can be represented as a set of discrete locations.  

Sdij ≤ ijd

Approaches have been proposed to relax spatial assumptions on facility placement 
in the MCLP to a certain degree. For instance, if demand locations are known, then 
geometric properties of coverage can be used to identify a set of candidate facility sites in 
continuous space that contains a subset of p sites that maximize coverage (see Church 
1984; Murray and Tong 2007). Although facilities are permitted to site in continuous 
space, discretisation is possible given spatial properties.  Such descretisation is possible 
by assuming either representation of demand as points or uniformly distributed demand 
in the case of lines or area objects, and enables problem solution using traditional discrete 
approaches. 

What remains a challenge is dealing with continuously distributed demand, 
particularly in the case of maximal coverage. Related work for complete regional 
coverage does exist.  Specifically, the p-centre problem is one model that can be used to 
site facilities to ensure complete coverage of a region.  The goal of the p-centre problem 
is to identify the p facility sites minimizing the maximum distance from each demand 
location to its nearest facility.  The Voronoi diagram heuristic (VDH) was proposed by 
Suzuki and Okabe (1995) and Suzuki and Drezner (1996) to solve the continuous space 
p-centre problem, and subsequently extended in Wei et al. (2006) to address practical 
application issues. The idea behind the VDH is that one can iteratively find a Voronoi 
diagram for a given set of p locations, then identify the optimal one centre for each 
Voronoi polygon. The process continues to iterate as long as a centre location changes. 
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Figure 1. VDH solution for partial coverage. 

 
Unfortunately, the p-centre problem, and hence the VDH, cannot deal with 

coverage maximization with a limited number of facilities. To illustrate this point, Figure 
1 depicts an optimal p-centre solution for p=15 using the VDH as well as the effective 
coverage distance of a warning siren (976 m). For this service standard, some 25 sirens 
are actually needed for complete coverage.  Examining the shown configuration, it is 
clear that sirens could be shifted to achieve greater coverage for this number of facilities.  
Given this, the p-centre solution clearly does not optimize coverage maximization. 

As noted previously, a special case of the maximal coverage problem was 
approach by Matisziw and Murray (2007) for a single facility.  Their approach to solving 
this special case relied on exploiting the geometric properties of a region. In particular, an 
alternative representation of a region, known as the medial axis, is shown to contain an 
optimal facility site. Thus, finding an optimal location for maximal coverage can be 
reduced to a search of those locations on the medial axis. 

3. Proposed Solution Approach 
In this paper, we propose a geocomputational approach for solving the continuous space 
maximal covering problem using Voronoi diagrams and medial axes. This can be 
considered an extension of previous work on the p-centre problem (e.g., VDH) as well as 
an extension of the single facility work of Matisziw and Murray (2007). 
 
The proposed approach for solving problem (1) is as follows: 
 

1. Locate p facilities. 
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2. Generate associated Voronoi diagram. Consider all Voronoi polygons 
unevaluated. 

3. For unevaluated Voronoi polygon, less external coverage to area, identify medial 
axis. 

4. Find best facility location along medial axis. 
5. If any Voronoi polygon unevaluated, go to step 3. 
6. If facility configuration has changed, go to step 2. 
7. Stop. Local optima reached. 

  
Computational results obtained from implementing this solution approach will then be 
assessed in relation to those obtained using discrete methodologies. 

4. Conclusions 
As discussed in this paper, siting facilities to maximize coverage of regional demand is 
an important planning goal in a variety of contexts. However, existing approaches entail 
discretisations of space that can spatially bias modelling results.  Here, we relax 
assumptions of discrete space and seek to maximize coverage of continuous demand 
through siting facilities in continuous space. Given that this is a non-linear and non-
convex spatial optimization problem, geometric techniques in GIScience offer much 
potential for addressing this complex model. 
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