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1. Introduction  
 
Spatial interaction models for commuting and trip distribution are a core component of 
transportation modeling in geography and regional science. Because of their long 
standing development, the fundamental computational and algorithmic issues associated 
with calibration and estimation of these models are quite well worked out (see papers 
cited in references and standard texts by Batty (1976); Wilson (1974); and Fotheringham 
and O’Kelly, 1989). The underlying computational issues are therefore a relatively 
routine matter of solving systems of non-linear equations with balancing factors. It has 
become apparent, however, that large scale disaggregate spatial models for trip 
distribution by employment type, gender, or other key socio-economic variables require 
at least some careful preplanning to make efficient and useful computations. Apart from 
good programming practice however, there seems to be some scope for improved 
mathematical tools for large scale applications. Sensitivity analysis for example can be 
accomplished through a type of predictor-corrector method. This paper will review and 
explore such issues in the context of origin-destination trip tables for several US cities. 
Practical and substantive implications in terms of the excess commuting literature are 
provided as an empirical test. 
 

2. Project overview  
 
As part of an extensive calibration and sensitivity analysis on US trip distribution models, 
the authors have preliminary experience with the size of the zoning schemes, and the 
numerical run times from an initial naïve algorithm (see Figure 1 and Table 1). The 
original focus of that work was not on computation, so there was no attempt to tune the 
algorithm to achieve efficient run times. The results show that the extensive run times are 
a barrier to effective scenario building and have opened the need for faster 
implementations. Our goal in this paper is to develop improved numerical run times. 
 
The model aims to compute the entropy of the trip distribution as a function of varying 
trip length, with a view to gauging the degree of difficulty of adapting the trip distribution 
to shorter, more constrained levels. 



 
 

City # of zones Time (sec.) 
Las Vegas 345 50 
San Diego 505 39 
San Antonio 1059 166 
Baltimore 1592 860 
Pittsburgh 2161 1573 
Denver 2656 3518 
Cleveland 2996 5036 
Philadelphia 4426 17983 

 
Table 1. Cities in preliminary case study. 
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Figure 1. The computational effort increases exponentially with number of zones. 
 
 
The standard doubly constrained spatial interaction model (Wilson, 1974) is given by: 
 

Tij = Ai Oi BjDj [f(Cij)] 
 
where, 
 
Ai = origin balancing factor 
Oi = number of worker living in zone i 
Bj = destination balancing factor 
Dj = number of jobs in zone j 
f(Cij) = cost function between zones i and j  
 



The cost function, f(Cij), is taken to be an exponential function and uses a parameter to 
model the empirically defined distance decay effect (Fotheringham and O’Kelly, 1989). 
Thus, the spatial interaction model incorporating the exponential function becomes: 
 

Tij = Ai Oi BjDj exp(-βCij) 
 
The model is especially useful for assessment of the so-called excess commuting 
phenomenon, as well as in applications that require estimates of unobserved sub-
population segments. 
 
Using a standard algorithm to get beta and entropy (based on Fotheringham and O’Kelly, 
1989) we input the observed average trip length, and an initial beta value, in this case say 
0.1. Then there is a loop for the first stabilization of the balancing factors. If they are 
stable then the code calculates the predicted trip length; if this is within the permissible 
error range the code outputs beta;  if it is not then it adds an increment to the original beta 
value and starts the larger loop again and stops when the predicted trip length is within 
tolerance of the observed trip length.  
 
The exogenous input to the model is the data consisting of the number of workers living 
in the origin zone (Oi), the number of jobs in the destination zone (Dj), the distance (Cij) 
and observed flow (Tij) between them. As discussed in O’Kelly and Niedzielski (working 
paper, 2007)  the spatial interaction component provides the necessary calculations, while 
satisfying these constraints, and incorporating distance-decay effects. The model seeks to 
fill in the cells of the modified trip distribution maintaining consistency with the observed 
flows and origins and destinations of the trips while reflecting variations in average trip 
length.  
 
There are many parameters that influence the computational speed. There is the size of 
the problem and disaggregation as well as the incremental changes and permissible error 
range for convergence. When this calibration in embedded in a sensitivity analysis, such 
as might occur in gauging the impact of decreasing trip length, the starting values for 
each successive iteration may be derived from the prior step. Such improvements are 
essential in order to make it possible to perform sensitivity analysis in disaggregated 
models.  
 
This paper reports improved computational approaches based on better exploitation of 
mathematical properties of the dependence of the entropy statistic on the trip length (i.e. 
beta) parameter. The new computational insight in this paper is to exploit the functional 
relationships between these statistics / parameters and thereby make more efficient 
computations of the rates of change, and thus the components of the total differential.  
 
The maximum entropy derivation of the doubly constrained trip distribution model is 
found from: 
 
MAX  Η = − ΣiΣj Tij ln Tij 
 



Subject to: 
 
  Σj Tij = Oi  λi is the related Lagrangean multiplier 
  Σi Tij = Dj   µj is the related Lagrangean multiplier 
  ΣiΣj Tij Cij = C  β is the is the related Lagrangean multiplier 
 
It can be shown that  
 

Tij = exp ( - λi  - µj - β cij ) 
 
which is the first order condition for the objective function to reach a maximum.  
 
As shown in O’Kelly and Niedzielski (2007) we can use these insights to solve the 
maximum entropy derived doubly constrained spatial interaction model for a given value 
of the average trip length. For the observed average trip length (C1), this run results in: 
 
  H1 = Σi λi

∗
1 Oi  + Σ j µj

∗
1 Dj  +  β∗

1 C1  
 
where the asterisk is designed to emphasize that these are the solution values and all 
depend on the exogenous data: Oi, Dj, and C1. Recall that in the excess commuting 
literature the Oi and Dj  are typically held constant, and the trip length is varied (towards 
a minimum or maximum). 
 
Since λi , µj , and β all depend on the change in C, the process is computed numerically: 
i.e. rerun for a different, reduced, average trip length (C2) 
 

H2 = Σi λi
∗
2 Oi  + Σ j µj

∗
2 Dj  +  β∗

2 C2  
 
Then after a small amount of algebra, 
 

H1 – H2 = Σi Oi  (λi
∗
1 - λi

∗
2 ) + Σ j Dj (  µj

∗
1 - µj

∗
2)  +  β∗

1 C1 - β∗
2 C2

 
The difference, H1 – H2 is the effort or degree of difficulty expressed in terms of the 
change in entropy, which is precisely the focus of our investigation. It is desired to 
compute this statistic for large systems, with many zones, and multiple layers of 
disaggregation, over a systematic evaluation of trip lengths.  
 
We know that as we reduce C1 to C2  that β1 < β2 and H1 > H2. While this property is well 
known, its use in developing sensitivity analysis may be exploited to good advantage, 
especially where large systems, or highly disaggregated models are in question. Models 
disaggregated by socio-economic variables add significant complexity to the solution 
procedure by using exogenous data for various employment categories, gender or race 
among others. The new model now needs to maintain consistency with observed trips and 
supply and demand totals for each level of disaggregation as well as the overall aggregate 
totals.  
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