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1. Introduction  

Texture, characterized by the spatial distribution of gray levels in a neighbourhood, is 
an important feature for many types of images including remotely sensed data, natural 
scenes and biomedical modalities and plays an important role in machine vision tasks 
such as surface inspection and scene classification. So texture analysis has been 
widely applied to many fields such as industrial automation, bio-medical image 
processing and remote sensing (Arivazhagan S. and Ganesan L., 2003). 

Three primary issues are usually focused in texture analysis, texture classification, 
texture segmentation and shape recovery from shape. And a set of methods were 
proposed for texture analysis, which have been categorized into four groups: 
statistical, geometrical, model-based and signal processing-based (Tuceryan M. and 
Jain A.K., 1993).  

As a statistical method, geostatistical technique has been popularly used in many 
texture anlaysis. It has been shown that range is directly related to the texture and/or 
objects size while sill is proportional to global object (class) variance; although it is 
effected by external factors i.e. image noise. Geostatistical method is based on the 
theory of regionalised variable, which can explore the spatial autocorrelation between 
pixels in the neighbourhood using variogram functions. A set of univariate and 
multivariate texture measures of spatial variability based on variogram estimators are 
available, such as variogram, madogram (mean absolute difference), rodogram (root 
pair difference), which show good performances in the classification and 
segmentation of remotely sensed images (Lark R M, 1996; Carr J.R. and Miranda F.P., 
1998; Chica-Olmo M. and Abarca-HernaÂndez F., 2000 ). 

In the process of texture calculation, moving window is used and features extracted 
are assigned to the center pixel of the window. So some problems arise in the process 
of texture computation and segmentation. One crucial issue, which is focused on in 
this paper, is the boundary blurring problem. Boundary regions tend to form new 
classes and go misclassified when using move-window in image classification, image 
segmentation and feature extraction. Many texture categories together with the 



boundary classed may overlap in the feature space. Boundary misclassification 
becomes especially problematic when using larger window sizes and for images with 
irregularly shaped boundaries (D.A. Clausi, 2004). The situation is that the larger the 
window size is, the more obvious the boundary effect is. But it’s also suggested that 
the homogenous regions of different texture within the image must be sufficiently 
large to allow computation of the variogram up to a reasonable number of lags, and 
automatic fitting of (non-linear) models to variograms is unreliable (Atkinson P.M., 
2000). So it has been in a dilemma to choose parameter for texture analysis. This 
paper will present an innovation to variogram-based texture derivation, which will 
improve boundary accuracy for image segmentation application. 

2. Methods  

In traditional variogram functions, features extracted are assigned to the center pixel 
of the window and pixel pairs in the image window are given a uniform weighting, 
which means that pixel pairs far from the center have the same impact with the ones 
close to the center. Thus boundary-blurring problems happen as pixels in the window 
across boundaries show higher contrasts than the ones in the window in the same class. 
By weighting pixel pairs in the center of the window higher than pixel pairs at the 
window boundary, boundary classes will be better classified. 

For continuous variables, such as reflectance in a given waveband, the 
experimental semivariance is defined as half the average squared difference between 
values separated by a given lag h, where h is a vector in both distance and direction. 

Thus, the experimental variogram (or semivariogram, SV) ( )hγ may be obtained 

from pairs of observations {1,2..., ( )i N= h ( ), ( )}i iZ x Z x h+  defined on a support 
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above formula. 
An inverse distance weighting scheme is proposed based on the pixel pair’s 

distance from the center of the window. This technique will be referred as weighted 
semivariogram (WSV) method. As shown in Fig.1, the distance between the pixel 
pairs and the center determines the impact on feature value of the center pixel. The 

greater the distance AB  (  is also tried as a substitute) is, the lower impact 

is. So the function can be written as: 
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Figure1 Measuring the distance between the pixel pairs to the center, B is the 

midpoint of . 1 2A A

3. Experiments and Results  

To compare which method can give better performance in boundary preservation, one 
test image (Fig 2(a)) is selected to generate textures. Sub images are cut from wetland 
area SAR image acquired from ENVISAT ASAR, including water (left-side) and land 
(right-side). Window size of 11×11 is selected and lag of 1 is used to compute texture. 
Then a boundary transect picture is got (Fig 2b, Fig 2c), which is the profile view of 
the texture value of as the image moves across the texture boundary. We can see that 
the boundary gets sharper and thinner when WSV is used, which means that boundary 
effect is reduced in some degrees. 

Another sub image (Fig.3a) of Wetland area acquired from ENVISAT ASAR sensor 
is selected to test the segmentation performance. Two methods are used to generate 



textures and derive water from the image (Fig.3c, Fig.3d), in which the same window 
size of 7×7 and lag of 1 are selected. The true boundary is given to compare the 
segmentation performance. The segmentation accuracies of the two methods are 
76.13% and 83.13% separately, which means 7 percent improvement for accuracy is 
got by using the WSV method. 

 
(a) 

  

(b)                                 (c) 
Figure 2 Edge transects across boundary of water and land texture images acquired 

from ENVISAT ASAR sensor. Broken lines represent the boundary. (a) Original 
image, consisting of water (left-side) and land (right-side), (b) texture transect got 

by SV, (c) texture transect got by WSV. 
 



  
(a)                              (b) 

  
(c)                              (d) 

Figure 3 ENVISAT ASAR image of Wetland. Grey lines are the true boundaries. (a) 
Original, (b) Manual segmentation, (c) SV segmentation, (d) WSV segmentation. 

4. Conclusions  

This paper focuses on reducing the boundary effects for texture segmentation. From 
the tests some conclusions are reached: The WSV is a novel method for texture 
segmentation and should be better than the traditional semivariogram method. Better 
features are derived by weighting pixel pairs in the center of the window higher than 
the boundary ones, and class boundaries can be better identified. Before carrying out 
texture segmentation, transects across class boundaries are derived to analyze the 
performance of the feature separability, which is used to choose optimal window size 
and lag for texture computation. It’s believed that, with the aid of precise texture 
information, better classification performance should be achieved for high resolution 
remotely sensed images and the combination with spectral information is suggested.  
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