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1. Introduction

This paper describes the tight integration of a general theory for geographic
representation (Goodchild et al., 2007) with a general representation for uncertain
concept information (Ahlgvist, 2004). Research on geographic data representations and
categorical measurement semantics suggest a potential for a close integration of these two
geographic information components (Gahegan et al., 2003). This integration is only
possible if representational approaches can be harmonized. In the following | will argue
that the geo-atom concept suggested by Goodchild et al. (2007) has a parallel in the
Uncertain Conceptual Space representation proposed by Ahlgvist (2004). By extending
the geo-dipole concept also described by Goodchild et al. (2007), | enable an integration
of the spatio-temporal and the conceptual dimension that forms a comprehensive geo-
attribute space for geographic information representation.

2. Geo-atoms and uncertain conceptual spaces
Geo-atoms are defined as tuples <x,Z,z(x)> where x defines a point in 4-dimensional

space-time, Z identifies a measured property, and z(x) is the particular value of that
property at the specified location (Goodchild et al., 2007). This representational primitive
has the capability to serve as the foundation for both object based views through
aggregation as well as field based views through a convolution operation using some type
of discretization. In many cases X is only measured in two spatial dimensions at a fixed
temporal location. Z is then added on as an extra measurement dimension in which only
one value is possible at each x location. While the geo-atom, geo-object, and geo-field
representation is mostly focused on capturing the dimensionality and discretization of
space-time, the Uncertain Conceptual Spaces approach (Ahlgvist, 2004) captures the
multi-dimensional character of many categorical geographic attributes.

Following a similar notation as before, a category or concept is also defined as a tuple

<s,p,p(s),w> where s defines a theoretically infinite collection of approximation spaces

each relating to a property that can define a concept. In this conceptual space a collection
of properties p are identified as salient to the definition of the category of interest. p(s) is
the particular values of those properties given as rough fuzzy set definitions (Ahlqvist,
Keukelaar, & Oukbir, 2003; Ahlqgvist, 2004) and it constitutes the uncertain conceptual
space. The inclusion of each property to the concept definition is determined by the
salience weights w, which can either use 0 or 1 for exclusion/inclusion, or any value in
between for graded importance to the concept definition. Further details on the cognitive



foundations for this concept representation approach can also be found in Gérdenfors
(2000). Similar to x, the conceptual space s has infinitely many possible locations, but the
dimensionality of s is not restricted to 4 + 1 measurement dimension. From the infinite
number of dimensions in s only a few, p as determined by w, are measured. Thus, there is
nothing in principle that makes a 2-dimensional x space different from a 2-dimensional p
space. Furthermore, Goodchild et al. (2007) point out that a discretization is a required
and inherent property of any 1-4 dimensional space-time field. In the uncertain
conceptual space this discretization is also inherent, and explicitly represented by the
approximation space (U,&) where a granularity is imposed on the underlying universe U

by an equivalence relation @ (Ahlqgvist et al., 2003).

Another key difference between the two representational approaches is that the
conceptual space property values are defined as fuzzy number regions or n-dimensional
volumes in the uncertain conceptual space. This concept representation format is similar
to the bona fide geo-object theory, also proposed by Goodchild et al. (2007), but by using
a vector p(s) of attributes {p(s)l, P(S),,-- p(s)n} defined as rough fuzzy numbers, we

form an n-dimensional uncertain conceptual space that allow for explicit representation
of uncertainty caused by measurement granularity and potential concept vagueness. The
concepts of interest can be thought of as C irregularly shaped hyper-volumes each
occupying a specific location specified by the set of rough fuzzy numbers on the n
attributes with the important extension that attributes can be anything from a Stevens
(1946) Ratio to a Nominal variable. Note that even though the representation can take
multi-variate rough-fuzzy numbers it easily generalizes down to simple numerical
measurements as well, since these are just a special case where membership is restricted
to 0 or 1 and the upper and lower approximations are equal.

3. Integration to form a geo-attribute space

Of specific interest now is the geo-dipole concept (Goodchild et al., 2007) that
accommodates for interactions between spatio-temporal phenomena. The geo-dipole is
also defined as a tuple, again connecting a property with a value, but not just for one
location in space-time as in the case of the geo-atom but for two locations;
<X1,X2,Z,Z(X1,X2)>. The property Z describes a relation between the two points based on
their values. Distance, directions, and flows are maybe the most common types of
interaction properties in spatial analysis, but there are many other types of interactions of
potential interest to analysts. Also, interaction need not be confined to spatio-temporal
relations but relations in any dimensions (Upton & Fingleton, 1985). There are for
example numerous examples of research in information theory and cognitive semantics
that use similarity metrics in aspatial information specifications such as ontologies
(Resnik, 1999; Rodriguez & Egenhofer, 2003; Schwering & Raubal, 2005; Tversky,
1977). For example, Ahlgvist (2004) identified the Euclidean distance in an uncertain
conceptual space and the fuzzy number overlap as informative metrics for an evaluation
of the semantic relationship between land cover categories.

Because of the structurally close resemblance between the geo-object and the
conceptual space representations we can see that it does not make any formal difference
to generalize the geo-dipole concept to accommodate for three different relations;

a) between two locations in physical space <xi,X2,Z,z(X1,X2)>



b) between two locations in conceptual space <s3,S,,Z,p(S1,52)>, and
c) between locations in physical and conceptual space <x1,52,Z,p(X1,52)>.

Case a) are the standard relations dealt with in spatial analysis, and case b) deal with
the aspatial relations mentioned above. The c) relations describe mappings from
properties in physical space to properties in attribute space as when measured spectral
reflectance in a satellite image is compared with the spectral signature of land cover
classes defined in a conceptual space with property dimensions of reflectance. Obviously,
the type of relation metric used in physical space-time and the metric used in conceptual
space need to be determined based on the question at hand to produce relevant results and
much research is still needed, especially for aspatial relation metrics. This extension of
the geo-dipole concept also allows for analysis of space-time-theme dependence. For
example, spatial autocorrelation metrics that assess the degree of spatial dependence of a

property are essentially formulated as a cross product ZZWU.YU. that summarizes the

product of a spatial relation metric w;; and a property relation metric Y;j; for a set of paired
observations (Getis, 1991). This would translate into the use of a) and b) dipoles such as
in the construction of an empirical semantic semi-variogram (Ahlqvist & Shortridge,
2006).

These examples demonstrate that a tight integration between the geo-atom, and
uncertain conceptual space representations is possible by extending the geo-dipole
concept to link between space-time and conceptual dimensions. | call this comprehensive
representation a geo-attribute space, and through this construct we can perform many of
the existing methods of spatial analysis as well as analysis of ontological structure and
also combinations thereof. Further studies are required to evaluate the usefulness of the
geo-attribute space construct to develop for example interactive software that provides
the same tight integration of space-time and concept dimensions, a path only tentatively
pursued so far, providing exciting research and application opportunities.
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