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1. Introduction 
The motivation for this paper is the problem of civil protection agencies to develop a risk 
model for their service planning. Within the strategic levels of planning and management, 
improvements in the identification of high or low risk areas can assist the emergency 
preparedness setting and resource evaluation (Krisp et al. 2005).  The core problem is in 
gaining an insight into complex relationships of the underlying phenomena and 
consequently in the selection of meaningful variables for the model. One of the possible 
solutions is to use exploratory data analysis and data mining methods to attempt to 
identify the potentially relevant hidden relationships from the data supplied by the 
emergency response services. 

Due to the progress in data acquisition and data processing technologies, real-world 
data have been recently collected and stored in large amounts. Various datasets can 
therefore be combined for the analysis. However, to find relevant patterns from the 
diverse types of data is a challenging task. Knowledge discovery from databases (KDD) 
and data mining in particular offer methods for discovery of yet unknown, but potentially 
useful, information from the data (Fayyad et al. 2002, Han et al. 2002). 

The special nature of spatial data, in particular spatial autocorrelation, heterogeneity, 
non-stationarity and complex geometrical and topological relationships between spatial 
and spatio-temporal objects, poses more challenges to the data mining process (Miller 
and Han 2001). There are two approaches to handle these special issues. The first option 
is to apply the conventional data mining methods to the pre-processed data, where the 
spatial relationships have been considered, while the other option consists of the 
development of new spatial data mining algorithms. Spatial data mining is 
computationally a very demanding process and it is therefore often complemented with 
methods for visual exploration (Keim et al. 2004, Ahonen-Rainio 2005, Klein 2005, 
Demšar et al. 2006). Visual data mining avails of the ability of the human brain to 
recognise interesting patterns in the data more efficiently and faster than any computer.  

Space and time are intrinsically interrelated in geography. One of the fundamental 
problems in GIScience has therefore been the support for spatio-temporal analysis. 
Because of the complexity of the problem, no fully adequate temporal GIS exists at the 
present time (Yuan 2007). With regard to knowledge discovery, spatio-temporal data 
mining has been identified as a research area, where knowledge is discovered from 
datasets that contain explicit or implicit temporal or spatio-temporal information 



(Hamilton et al. 2006). Recently, a number of studies focused on developing either 
computational or combined visual-computational methods that could be used to identify 
patterns that are simultaneously spatial and temporal (Andrienko et al. 2003, Kwan 2004, 
Laube and Purves 2006, Compieta et al. 2007).  

In this paper we focus on the improvement of the existing risk model (Ihamäki 1997) 
for the Fire and Rescue Organisation in the Helsinki Metropolitan Area, Finland. There is 
a need to explore the relations between the occurrence of recorded emergency response 
incidents and the characteristics of the surrounding areas of these incidents. Previous 
work focused on the investigation of the incident location and the surrounding spatial 
objects (Karasová et al. 2005) and exploration of the socio-economic aspects of the 
phenomenon (Špatenková and Krisp 2007). However, while the temporal component is 
of a special interest in this case (Ahola et al. 2007), it has not yet been investigated 
properly. 

This paper describes an approach to identify spatio-temporal relationships in 
emergency response data by combining spatio-temporal data pre-processing, application 
of a traditional computational data mining algorithm and finally visualisation and visual 
exploration of the result. The paper is structured as follows: the methodology for the 
data-pre-processing and exploration is presented in section 2. Section 3 lists a selection of 
the more interesting results and section 4 contains conclusions about the suitability of the 
chosen data mining approach as well as plans for further research. 

2. Methodology 
A Self-Organising Map has been chosen for this study to discover patterns in spatio-
temporal data. The data were pre-processed so that the relevant spatial and temporal 
information could be handled by the conventional SOM algorithm. The computational 
step was followed by visualisation and visual exploration of the results. All SOM 
calculations were done and visualisations produced using the SOM toolbox for Matlab. 

2.1 Self-Organising Map (SOM)  
The Self-Organising Map (SOM) is an unsupervised neural network that maps 
multidimensional data onto a two-dimensional lattice of cells. It preserves the probability 
density and the topology of the input data and thereby also the similarity patterns that 
exist in the higher dimensional space (Kohonen 1997, Silipo 2003). 

The SOM defines a mapping from the n-dimensional input data space onto a two-
dimensional array of neuron cells in a rectangular, hexagonal or irregular lattice. In the 
beginning, every cell is assigned a vector of weights, mi. During the training phase, the 
SOM finds the location of the neuron that is most similar (i.e. the best match) to the input 
data vector. After each input the weight vectors mk of each neuron in a neighbourhood of 
the best match neuron mc are recalculated according to the distance to the best match 
neuron and the neighbourhood kernel function hck(t). This function reaches the highest 
value at the best matched neuron mc and monotonically decreases towards 0 with distance 
from the central neuron (fig. 1). This means that nearby cells activate each other up to a 
certain distance to learn from the same input data vector. Similar data vectors are 
therefore mapped to cells that are close to each other in the output space (Kohonen 1997).  

The two-dimensional result space of the SOM makes it a very nice method to 
represent visually. For the work described here, the relevant visualisations are the 



distance matrix (D-matrix) and the component planes, while other visualisations can be 
found in Vesanto (1999).  

 
 

Figure 1. The Self-Organising Map with a hexagonal neuron lattice. The neighbourhood 
function hck(t) is centred over the best matched neuron mc, which is shown as a black cell. 

The neighbouring neurons that have their weights recalculated by this best match are 
shown in grey. Other neurons are not affected. 

 
In a D-matrix a grey shade or a colour is assigned to each lattice cell according to the 

distance to its immediate neighbours. Light areas in such a map indicate groups of similar 
cells, i.e. clusters. Dark areas contain less similar neurons and mark borders between 
clusters (Kohonen 1997, Vesanto 1999). In the SOM toolbox used in our study, the 
distance values in the D-matrix are represented on the blue-green-yellow-orange-red 
colour scale, where blue corresponds to low and red to high values. The clusters in our D-
matrix can therefore be identified as contiguous bluish areas, while orange to red patches 
indicate areas of greater dissimilarity and as such represent borders between clusters. 

The result of the SOM can also be visualised using the component planes, with one 
lattice shown for each attribute. Each lattice is coloured according to the values of a 
particular attribute. In the SOM toolbox, the colours for the planes range from blue 
through green, yellow and orange to red on a similar scale as the one for the D-matrix. 
Again, blue represents low values and red high values of each attribute. The planes can 
be compared to each other to find correlations between attributes – these are revealed as 
similar patterns at identical locations in different component planes (Vesanto 1999, Koua 
and Kraak 2004).  

The SOM is useful as a knowledge discovery tool for spatial datasets because it 
preserves both the topology and the distribution of data vectors in the input space. It has 
been used for knowledge discovery in a number of spatial applications (Takatsuka 2001, 
Gahegan et al. 2002, Jiang and Harrie 2004, Koua and Kraak 2004, Guo et al. 2005, 
Demšar 2007), but spatio-temporal applications are fewer, for example Skupin and 
Hagelman (2005).  

2.2 Discovering spatio-temporal patterns with help of a SOM 
Apart from the spatial distribution, the emergency response data used in our study have 
distinct temporal characteristics. The incidents are recorded over the time of the year, the 



day of the week and the hour of the day. These characteristics add an additional temporal 
value to the already multidimensional spatial dataset. In our study, the SOM was used to 
project this dataset to a two-dimensional geometric space, which can be considered as a 
spatial metaphor or a spatialisation (Skupin and Fabrikant 2007) of the original dataset. 
The aim is to reduce the complexity of the data while at the same time preserving the 
ability to discover patterns that are simultaneously spatial and temporal. Since SOM 
preserves the topology of the original multidimensional space, it is a suitable clustering 
method for this purpose. Because of the SOM’s topology preserving property, spatial 
patterns discovered by visual exploration of the SOM space correspond to spatio-
temporal patterns in the original dataset.  

 

 
 

Figure 2: Map of the study area. 
 

The data used in this study consist of the PRONTO records of fire and rescue incidents 
in the Helsinki Metropolitan Area (fig. 2) for the years 2004-2006. This is a point dataset 
which was for this experiment combined with background information about the 
population and the infrastructure. We have extracted 11 spatio-temporal attributes from 
the incidents dataset, describing the incident occurrence: the day in the year (1-365), the 
day of the week (1-7), the hour (0-23), the incident type, X-coordinate, Y-coordinate, and 
the types of the five nearest incidents. The background information comes from 
“SeutuCD”, a data collection of population, business, topology, and infrastructure 
information published by the regional council of Helsinki in 2003. From this data source, 
we have selected four additional attributes describing the surroundings of the incidents: 



the distance to the nearest building, the type of the nearest building, population density 
and age density (calculated based on average age of people living in each building, e.g. 
areas with houses for elderly people have higher values of age density than areas with 
young families). 

3. Results 
This section demonstrates the process of discovering the patterns in the data by using the 
SOM visualisations and presents a selection of interesting results. It should be noted that 
these results describe observations which implicitly describe the relationships in the 
studied dataset and can serve as the basis for hypothesis formation. However, to avoid the 
interpretation fallacy based on coincidental patterns in this particular dataset, the results 
should be confirmed and validated by the domain experts before they can be used. This 
should be done to ensure that the coincidental patterns existing in the data without 
causality relationships are excluded from further consideration before the actual risk 
modelling takes place. 

Clusters represent similarities in the original spatio-temporal attribute space. They can 
be identified from the D-matrix as areas of predominantly blue colour, which indicates 
that cells in these areas are similar to their neighbours. Cells in red areas of the D-matrix 
are different from their respective neighbours and as such represent borders between 
clusters. On inspection, the D-matrix can be subdivided into seven clusters (fig. 3). In 
fig. 3, these clusters have been superimposed on the component planes for each attribute. 
Looking at these other planes, we can observe that the clusters match the patterns in the 
component planes to some degree. For example the triangular cluster in the bottom left 
corner represents incidents occurring in the built-up area of the highest age density, 
which is not densely populated. The incidents in this cluster occurred mainly in the 
summer and during the daytime, the actual location varies, but similar incidents occur in 
their neighbourhood (as indicated in the planes for attributes NEAR_TYPE1 to 
NEAR_TYPE5, where the area of this cluster has approximately the same colour in all 
these five planes). This cluster also represents a group of similar incident types located in 
the higher values of the incidents’ classification - the exact codes should be further 
investigated. 
 



 
 

Figure 3. Identification of clusters from the D-matrix and their location in the component 
planes. The colour scale goes from dark blue (low values) through green (medium values) 

to dark red (high values).  
 

By comparing different areas of the SOM in the component planes, we can discover 
relationships between the attributes. For example, from fig. 4 we can observe that the 
weekend incidents (which are located in the dark red areas of the relevant component 
plane – WEEKDAY) do not seem to occur during the early morning, but instead during 
the afternoon and in the evening. They occur in the southern part of the study area where 
population and age density are low and in the proximity of buildings classified by low 
values (building types should be further investigated). Similarly, we can say that winter 
incidents occur in the north-east in the afternoon, but in the south in the morning. 
Summer incidents, on the other hand, occur in areas of high population density and are of 
different types during the mornings and during the afternoons. During the weekends, 
incidents occur mainly in the south and south-west. Early morning incidents in general do 
not occur during the weekends and they are located either in the south-west, or north-east. 

 
 



 
 

Figure 4. Discovering relationships between the attributes from the component planes. 
The colour scale goes from dark blue (low values) through green (medium values) to dark 

red (high values). 
 

Comparing the patterns in the component planes for attributes NEAR_TYPE1 to 
NEAR_TYPE5, two areas with similar colours in all these five planes can be identified. 
These two areas are roughly indicated with a rectangle and a circle in fig. 5 and represent 
areas of similar incidents. It seems that incidents in both these areas occur on Saturday 
evenings, but they differ considerably in location and in the building types in the 
neighbourhood. 
 

 



 
 

Figure 5. Areas of similar neighbouring incidents, as indicated by similar colours in the 
component planes NEAR_TYPE1 – NEAR_TYPE5. Other characteristics of these 

incidents can be found from the remaining component planes. The colour scale goes from 
dark blue (low values) through green (medium values) to dark red (high values). 

 

4. Conclusions 
This paper describes how a computational data mining method - the SOM - can be 
effectively used to provide an insight into the relationships in the spatio-temporal data 
and thus support the modelling of the studied phenomenon. The observations as 
presented above can serve for hypothesis formation describing the relationships in the 
studied dataset and after consultation with the domain experts be used for emergency risk 
modelling. Since knowledge discovery is an iterative process, more expert opinion could 
be included in the exploration process, to explain and validate some of the structures and 
patterns revealed by the use of the SOM. 

Combining the computational method with the visual exploration of the result helped 
to make fast and easy-to-interpret observations about the patterns in the dataset. On the 
other hand, because of the “throwing many things in one cell” property of the SOM, the 
details were obscured. For example, in this study it was difficult to distinguish between 



the particular incident types or building types in question, we could only estimate the 
time of day in general terms such as morning/afternoon/evening and we could not 
properly differentiate between the days of the week. Further investigation of these 
patterns with other methods is therefore necessary to gain real meaning from the results. 

Another issue is that since the SOM visualisations are a spatialisation in an abstract 
two-dimensional space which has nothing to do with the original geographic space, the 
connection with the real-world locations can be difficult to infer. Integrating the 
component planes with a real spatial representation of the input geographic space, i.e. a 
map, would make the interpretation easier to follow, but the SOM toolbox does not 
provide this option. One of the possible goals for future research is to repeat and improve 
the exploration procedure using an appropriate software package that provides the 
integration of the SOM with other visualisations, such as for example the GeoVista 
Studio (Gahegan et al. 2002). However, a disadvantage of such applications is the non-
flexibility regarding the size and the training method of the SOM, since these are usually 
predetermined and can not be changed. Another possibility would therefore be to 
consider developing bespoke software components for coupling the SOM with an 
existing GIS software, i.e. something similar as done by Skupin and Hagelman (2005). 
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