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Abstract 
 
Due to the increasingly demand for spatio-temporal analysis, time series and spatial 
statistics are extended to the spatial dimension and the temporal dimension respectively or 
they are combined via linear regression. However, such linear regression is just a 
simplification of complicated spatio-temporal associations existing in complex 
geographical phenomena. In this study, the Support Vector Machine is introduced to 
combine spatial and temporal dimensions nonlinearly. Experiment results show that 
nonlinearly regression via the Support Vector Machine obtained better forecasting accuracy 
than that using the linear regression and other conventional methods. 

1. Introduction  
Geographical data have not only spatial but also temporal characteristics. In order to 
achieve integrated spatio-temporal analysis and forecasting, time series and spatial statistics 
are extended to the spatial dimension and the temporal dimension respectively, or they are 
combined via linear regression (Deutsch and Ramos 1986, Pfeifer and Deutsch 1990, 
Cressie and Majure 1997, Pokrajac and Obradovic 2001, Cheng and Wang 2006, Cheng 
and Wang 2007). However, such linear regression is just a simplification of complicated 
spatio-temporal associations existing in complex geographical phenomena.  

Recently, there are some studies on nonlinear combination forecasting methods. These 
studies have demonstrated that nonlinear combination forecasting methods can obtain better 
forecasting accuracy than that resulted from linear combination methods. For example, 
Jiang proposed a nonlinear compound forecasting model based on artificial neural network 
(ANN) to extract effective information with individual forecasting method and satisfactory 
results have been achieved (Jiang and Xie 1999). Dong (2000a) presented a nonlinear 
forecasting method based on fuzzy Takagi-Sugeno model to overcome the limitation in 
linear combination forecasting (Dong 2000a). The method is feasible and effective for 
forecasting of non-stationary time series in nonlinear systems, which have some 
uncertainties. Subsequently, Dong (2000b) constructed a nonlinear combination forecasting 
model based on wavelet network to solve the difficulties and drawbacks in combined 
modeling non-stationary time series by using linear combination forecasting (Dong 2000b). 
However, existing methods are insufficient in constructing and solving nonlinear 
combination function because they have limitations such as slow convergence rate, local 
optimum, immature saturation phenomena and so on.  

The Support Vector Machine (SVM) is a novel machine learning method based on 
Statistical Learning Theory, which adheres to structural risk minimization principle, aiming 



to minimize both the empirical risk (estimation of the training error) and the complexity of 
the model, thereby providing high generalization abilities (estimation accuracy) (Vapnik 
1995). SVM provides nonlinear and robust solutions by mapping the input space into a 
higher-dimensional feature space using kernel functions. Originally, SVM has been 
developed to solve pattern recognition problems. With the introduction of Vapnik’s ε -
insensitive loss function, SVM has been extended to solve nonlinear regression estimation 
problems, such as new techniques known as support vector regression (SVR), which have 
been shown to exhibit excellent performance (Smola 1986, Wang 2005, Wang and Fu 
2005).  

In this study, SVM will be used to construct nonlinear regression function related to the 
spatial and temporal dimensions. A nonlinear integrated spatio-temporal is carried out for 
the annual average temperature of meteorological stations in China from 1951-2002 using 
the proposed method.  

 

2. Principle of SVM for Spatio-Temporal Regression 
 
2.1 Linear Regression Model  
A linear regression function for spatio-temporal regression can be formulated as follows 
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where m  denotes that there are m forecasting methods; n denotes real value at thn  time; 
itϕ denotes the forecasting result created by method i at time t; iw  denotes weight of 

thi forecasting method. 
For spatio-temporal integration, Formula 1  can be reformed as  

SToverall fxfxf ×+×= 21 + regression_constant   (2)    
where 1x  and 2x  are  regression coefficients,  and t is regression constant. 
However, such linear regression is not valid (or result in big forecasting errors) when real 

value are situated in three cases shown in Figure 1, 2 and 3.  
 

 

)(1 xϕ
)(2 xϕ

ty )(1 xϕ
)(2 xϕ

ty

)(1 xϕ

)(2 xϕ

ty

 
 
 
 
2.2 Nonlinear Regression Model  
In order to solving above problem, Wen et al proposed nonlinear combination model which 
are formulated as follows (Wen and Niu 1994) 

Fig. 1 Real curve situated upper Fig. 2 Real curve situated below Fig. 3 Real curve intersected



                  ( ) ( )mϕϕϕφφ ,,,y 21 L=Χ=    （3） 
where ( )Χφ  denotes the nonlinear regression of forecasting results created by m methods 
denoted by iϕ  ( )mi ,,2,1 L= . However, constructing effective nonlinear combination 
function ( )Χφ  is very difficult because there is no fixed formula to use.  
 
2.3 Principle of SVM 
Originally SVM was used for classification, i.e. searching for the optimal separating surface, 
the hyperplane, equidistant from the two classes (Vapnik 1995). This optimal separating 
hyperplane has many nice statistical properties. SVC is outlined first for the linearly 
separable case. Kernel functions are then introduced in order to construct non-linear 
decision surfaces. Finally, for noisy data, when complete separation of the two classes may 
not be desirable, slack variables are introduced to allow for training errors.  

The Support Vector Methods can also be applied to the case of regression by 
introducing an ε -insensitive loss function (Vapnik 1995；Smola 1996). As with the 
Support Vector Classification algorithm, optimal separating hyperplane is searched for 
regression. Support Vector Regression (SVR) relied on defining a loss function that ignored 
errors that were within a certain distance of the true value. Moreover, loss function allows 
the concepts of margin to be carried over to the regression case keeping all of the nice 
statistical properties. SVR also results in a quadratic programming. In two dimensions 
space the optimal separating hyperplanes for SVC and SVR is shown in Figure 4. 
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Support vector regression (SVR) is a powerful technique to solve the nonlinear 

regression problem. There are several attractive characteristics of the SVR: robustness of 
the solution, sparseness of the regression, automatic control of the solutions complexity, 
good generalization performance (estimation accuracy) (Kanevski et al 2000, Kanevski 
2004). Detailed descriptions of SVR can be found in Vapnik (Vapnik 1995) and Smola 
(Smola 1996). 
 
2.4 Nonlinear Spatio-Temporal Regression by SVM 
Suppose there are two forecasts such as temporal forecasting Tf  and. spatial forecasting Sf . 
The question is how to combine these different forecasts into a signal forecasting ŷ , which 
is assumed to be a more accurate forecasting. In fact, a nonlinear combination forecasting 
model can be viewed as nonlinear information processing system which can be represented 
as: 
 ),,()(ˆ ST ffXy φ=φ=        (4) 

Fig. 4. The optimal separating hyperplanes for SVC (left) and SVR (right) 



where X is attribute vector, which consists of Tf and Sf , and )(Xφ  is a nonlinear 
prediction function, which is used to predict the value of y  knowing individual temporal 
forecasting Tf  and. spatial forecasting Sf . Thus, the nonlinear combination function can be 
formulated in the following form: 
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where iα or *
iα with non-zero is regarded as the "support vector (SV)" of the nonlinear 

prediction function; ),( ⋅⋅K  is kernel function. 
Usually we have more than one kernel to map the input space into feature space. 

Polynomial and RBF kernel functions are most common. Polynomial kernel function is 
defined as: 

.)1(),( "'"' dXXXXK +⋅=        (6) 
RBF kernel function is defined as: 
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The question is which kernel functions provide good generalization for a particular 

problem. We could not say that one kernel outperforms the others. Therefore, one has to 
use more than one kernel functions for a particular problem. Some validation techniques 
such as bootstrapping and cross-validation can be used to determine a good kernel (Smola 
1996). For instance, RBF has a parameter σ  and one has to decide the value of σ  before 
the experiment. Therefore, selection of this parameter is very important in order to achieve 
the expected accuracy. 

Therefore, a nonlinear regression function ),( ST ffφ  is constructed by performing the 
SVR on the temporal forecasts Tf and the spatial forecasts Sf to find out the best spatio-
temporal forecasting values.  

3. Case study 
Experimental data sets are based on the annual air temperature at 26 meteorological stations 
provided by national meteorological center of P. R. China. The meteorological data 
between 1951 and 1992 are chosen as the training dataset for the forecasting the average 
temperature (degree/year) at Guangzhou city between 1993 and 2002. In the experiment, 
ARIMA (Auto-Regression in Moving Average) provided by Matlab software package is 
used for temporal forecasting, a dynamic recurrent neural network (Elman network) is 
applied for spatial forecasting (Cheng and Wang 2006；2007).   
 Support vector regression is employed to find nonlinear combination function 

),( ST ffφ (to generate the overall forecasting) (see Equation 5), the selection of the kernel 
function and corresponding parameters plays a significant role in obtaining good 
forecasting. In this study, polynomial function of degree d (see Equation 6), and radial 
basis function with radius σ (see Equation 7) has been tested. Table 1 shows the results of 
accuracy comparison between polynomial kernel and RBF kernel. Comparison of NMSE 
index and numbers of SVs indicates RBF kernel was more suitable for spatio-temporal 
forecasting. In addition, C  also is a very important parameter, which controls the trade-off 
between maximizing the margin and minimizing the training error Kernel parameters, as 
well as C , are usually tuned by minimizing cross-validation or the testing error calculated 
on an independent set. Finally, RBF kernel is selected based on testing results with the 
kernel parameters σ =1, ε =0.001 and C =1000.  



 
 

Group 1 Kernel 
Training 
NMSE 

Numbers of SVs 

Polynomial (d=6) 0.546 42 
Polynomial (d=7) 0.440 41 
Polynomial (d=8) 0.364 40 
Polynomial (d=9) 0.312 41 
RBF ( 5.0=σ ) 0.305 42 
RBF ( 1=σ ) 0.105 39 
RBF ( 5.1=σ ) 0.212 41 
RBF ( 2=σ ) 0.369 42 

 
For comparison purposes, we also construct three other forecasting models, a pure time 

series model (ARIMA) for temporal forecasting, a pure Elman RNN (RNN) for spatial 
forecasting, and an improved STIFF (ISTIFF, which uses a linear regression of ARIMA 
and RNN, Cheng and Wang 2006), and compare them with the proposed model side by side 
in this study. The result forecasting plots and tables are shown in the subsequent Figure 5 
and Table 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
    Table 2: Comparison of forecasting accuracies 

Data 
Training data Testing data 

Model 

NMSE Rank
 

NMSE Rank 
RNN 0.632 4 0.864 4 
ARIMA 0.386 3 0.415 3 
ISTIFF 0.207 2 0.268 2 
SVM 0.105 1 

 

0.193 1 
 
From Figure 5 and Table 2, we can see that the SVM based nonlinear regression 

achieved better forecasting accuracy than linear combination of spatio-temporal forecasting 

Table 1. A comparison of different kernels )001.0,1000( == εC  

18

20

22

24

1993 1995 1997 1999 2001 YEAR

A
n
n
u
a
l
 
a
v
e
r
a
g
e

t
e
m
p
e
r
a
t
u
r
e
(
d
e
g
r
e
e
/
y
e
a
r
) REAL RNN ARIMA ISTIFF SVM

Figure 5 Forecasting results by different methods 



(ISTIFF), which is better than pure time series model  for temporal forecasting, and pure 
Elman RNN  for spatial forecasting respectively.  

4. Conclusion 
In this study, a support vector regression algorithm is introduced to construct and find out 
nonlinear combination functions related to the spatial and temporal dimensions. The 
forecasting results show that nonlinear integrated spatio-temporal forecasting model using 
support vector regression obtains better forecasting accuracy than linear combination of 
spatio-temporal forecasting. Further studies are needed to extend the nonlinear spatio-
temporal regression to address spatio-temporal forecasting involving multiple variables. 
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