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1. Introduction  
 
1.1 Motivation 
Much research is currently being undertaken in transportation to create more realistic 
models of transportation networks that account for the spatial heterogeneity in those 
transportation networks (Mark and Sadek, 2004), and also the different modes of 
transport that may be used. Simply assuming that users will travel at the maximum speed 
limit for a particular class of road fails to model local environment factors which may 
influence speed of travel. For example, the average speed of traffic on motorways is 
related to the volume of traffic, which tends to be higher around major conurbations. Real 
time traffic information is useful for relatively short journeys that are already underway, 
but given the ephemeral nature of this information, it is less useful for longer term 
journey planning. 
 
This study pioneers the Geographically Weighted Regression (GWR) technique 
(Fotheringham et al., 2002) for modelling realistic transportation network conditions 
based upon the long-term previous experience of users of that network. It is hoped that 
this technique could be an effective approach to making longer term predictions of 
accessibility via transportation networks, which can account for spatial heterogeneity, 
temporal variation on a number of scales, and the particular characteristics of specific 
modes of transport. 

1.2 Aims and objectives 

The aim of this paper is to investigate the potential of the Geographically Weighted 
Regression (GWR) technique for modelling realistic road network characteristics based 
upon the previous experience of road users. The scope of this study is limited to cycling 
data collected in Essex, with the intention of examining how suitable GWR is to 
modeling accessibility via transportation networks. 

The specific objectives of this study are: 
• to acquire network data that models the road transportation network in the study 

area; 



• to investigate how Geographically Weighted Regression can be applied to model 
accessibility on transportation networks; 

• to consider the factors which influence speed of movement on road networks; 
• to use the Geographically Weighted Regression technique to generate a model of 

accessibility on a transportation network based upon the experience of a particular 
type of road user and; 

• to use the network for routing and comparing the results to existing (commercial) 
routing services. 

1.3 Previous research 

Geographically Weighted Regression (GWR) is statistical technique which aims to 
account for the spatial heterogeneity that may exist in regressed relationships (Yu, 2006). 
It allows the relationships between variables in a regression equation to vary over space 
by making  local parameters estimates for a regression model. The GWR approach has 
been employed in research on housing (Yu, 2006), rainfall (Brunsdon et al., 2001), 
population (Yu and Wu, 2004) and other areas, however has had limited application 
within the field of transportation research.  Zhao and Park (2004) have applied the GWR 
technique to estimate traffic density, but not accessibility. 
 
2. Method and Results 
There are four stages to the methodology – input data, geographically weighted 
regression, network initialisation and routing analysis – as shown in figure 1. Each stage 
will be discussed in turn. 
 
Figure 1: Methodology for creating transportation network models, based upon 
previously observed behaviour 
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2.1 Input Data 

The two main data requirements are mobile trajectory data representing spatial behaviour, 
and transportation network data for a particular study area. The mobile trajectory data 
should be a large collection with a good coverage of the study area, should represent a 
single form of transport, and preferably be collected over a long period of time to prevent 
particular conditions on any one day influencing results. The mobile trajectory data used 
in this study represented cycling behaviour for a single individual (a keen cyclist in his 
30’s), collected over a two-year period. The study area was narrowed down to a region in 
Essex incorporating Bishop’s Stortford, Braintree and Chelmsford where the mobile 
trajectory data was particularly dense (see figure 2). The transportation network data was 
the road centre lines provided by the Ordnance Survey Integrated Transport Network 
(ITN) (Ordnance Survey, 2005). The final input dataset is a regular lattice of point 
locations covering the study area, which are the points at which the GWR parameter 
estimates will be made (Fotheringham et al., 2002). This produces a regular lattice of 
local GWR parameter estimates, which can easily be converted into continuous raster 
surfaces.  
 
 
Figure 2: Input mobile trajectory data: cycling behaviour in Essex. 

 
 



2.2 Geographically weighted regression 

There were many candidate parameters for the regression equation used to predict the 
speed of movement in the study region. These included temporal parameters (time of day, 
day of week) network attributes (junction density, road class) and terrain (gradient). In 
order to keep the equation simple to aid understanding of the suitability of GWR in this 
exploratory study, only one attribute was used to model speed: edge length. Edge length 
this is the length of each road section in the network and is the inverse of junction 
density. The hypothesis was that speed would be faster on longer, unbroken sections of 
road (edges) with fewer junctions, than the shorter sections with higher junction density 
likely to be found in more built up areas. 
 
The resulting regression equation for which parameter estimates needed to be found was: 
  

speed = c + (m * edgeLength)       (1) 
 
where c is the intercept (default speed) and m the parameter estimate for edge length. 
 
2.2.1 Global regression results 
First a global regression model was calculated, estimating the parameters c and m for 
equation 1 for all of the mobile trajectory data. The global regression equation for speed 
and network edge length for cycling data in Essex was found to be: 
 
 speed = 6.8 + (0.0006 * edgeLength)     (2) 
 
Where the units for speed are metres per second (m/s) and edge length is measured in 
metres (m). This suggests a default global speed (intercept) for this dataset of 6.8 m/s, 
and a positive relationship between road section length and speed: i.e. speed will be faster 
on longer sections of road. This fits with the hypothesis that higher junction density will 
result in slower speeds. This global regression model can be seen in figure 3. 
 
Figure 3: Global regression – relationship between edge length and speed  

 



Hence for low junction density (road sections of 100m or less), speed will be close to the 
default (around 6.8m/s). For unbroken road sections of 1000m, a noticeable increase in 
speed will be evident (7.4 m/s). Clearly for very long sections of road, this linear 
regression equation will result in unrealistic speeds for cyclists, however the longest edge 
length in the study area was 3,500m, which results in a realistic speed estimate of 8.9 m/s 
using equation 2. 
 
2.2.2 Geographically weighted regression results 
Next, local parameter estimates (c and m in equation 1) were calculated for each 
regression point in the regular lattice, using only the local mobile trajectory data. An 
adaptive kernel (Fotheringham et al., 2002) was applied that used the nearest 2000 data 
points for calculating local parameter estimates. These point lattices of parameter 
estimates were then transformed to surfaces using local interpolation. 
 
Figure 4: Variation in intercept (default speed) over space (lighter 
indicates faster) 

 

 
Considering the variation in the parameter estimates over the study region, the value of c 
(default speed) varies between 4.5 and 8.4 m/s. As figure 4 shows, the higher default 
speeds (shown lighter) tend to be found in rural areas, particularly noticeable between 



Great Dunmow and Braintree, and between Chelmsford and Harlow. The (visited) urban 
centres and Chelmsford, Braintree, Great Dunmow and Bishop’s Stortford are all 
associated with lower default speeds. 
 
 
Figure 5: Variation in ‘edge length’ parameter estimate over space 
(lighter is higher). For higher values, road section length has greater 
influence. 
 

 
 
The ‘edge length’ parameter estimate varies between -0.0004 and 0.0073, a 
predominantly positive relationship, again supporting the hypothesis that longer edge 
lengths are associated with faster speeds. As shown in figure 5, this parameter estimate 
also varies over space and tends be larger in urban areas, such as Bishop’s Stortford to 
the NW, and Chelmsford to the SE. (Despite the obvious peak around the urban area of 
Harlow, this location was not visited by the data collector and is likely to indicate an 
extrapolation artefact, hence is not considered here). This would suggest that edge length 
has a greater influence in urban areas than in rural areas. This urban-rural distinction fits 
with an observation of the relationship between junction density and speed for cyclists. 
Considering the urban case, ringroads - with fewer junctions - tend to be the fastest routes 
through urban areas and offer cyclists a quicker route than going through alternative 



urban areas with a higher junction density and more traffic restrictions. In the rural case 
however, cyclists are unlikely to have to slow down for the small villages that they pass 
through, even though junction density increases in these village centres, relative to the 
surrounding countryside. 
 
2.3 Network initialization 
Given the parameter estimate surfaces shown above, a unique speed can be calculated for 
each edge in the network by entering the length of the edge into equation 1, and using the 
local parameter estimates for default speed (c) and edge length (m). This produces the 
speed network shown in figure 6. This network demonstrates a clear trend that urban 
areas tend to be associated with lower speeds (darker brown edges) and rural areas faster 
speeds (lighter edges). Knowing the length of each edge and the speed associated with it, 
a traversal time can be also be calculated for each edge which can be used as an 
impedance value for routing. 
 
Figure 6: Road network with calculated speed (lighter edges indicate 

faster) 

 

 



2.4 Routing analysis 
The network above was used to calculate the fastest routes between two locations, and 
this result compared to a commercial routing service. Only one such route is described 
here. The test route was between Galleywood (Chelmsford) and Hatfield Broad Oak 
(Hatfield Heath). Figure 7a shows the route suggested from the speed network generated 
in section 2.3. Figure 7b shows the route suggested by Google maps route planner 
(Google, 2006). It can be seen that the route suggested by the speed network based upon 
the previous experience of the Essex cycling mobile trajectories takes a more direct route, 
heading SE on a minor A-road through the open countryside. It then uses the inner ring 
road to pass to the South of Chelmsford town centre. The Google route planner heads 
North initially to join a major A road, and sticks to major roads at the expense of the 
more direct route. This strategy of seeking out more major roads employed by the 
commercial service may be preferable for users of automated transport, but is unlikely to 
provide the fastest routes for cyclists. 
 
Figure 7: Routing between Galleywood (Chelmsford) and Hatfield Broad Oak 
(Hatfield Heath) 
a. Route suggested based upon GWR 
speed network 

b. Route suggested by Google maps route 
planner (Google, 2006) 

4. Discussion and Conclusions 

This paper presents an exploratory study to apply the geographically weighted regression 
technique to calculating the speed of movement on a road transportation network based 
upon the previous experience of users of that network. The limited scope of the study, 
constrained to a region of Essex and based upon the experience of a single individual (a 
cyclist), means that care must be taken when interpreting these results, but nevertheless 
the study suggests that GWR may provide an effective approach to modelling the spatial 
heterogeneity associated with speed on transportation networks. 
 
The regression model used is a trivially simplistic one, considering only edge length as a 
predictor for speed, but nevertheless, meaningful trends emerge in the resulting parameter 
estimate surfaces and resulting speed network. Future research intends to; 
 



• integrate more prediction parameters (for example: road class; gradient; time of 
day; day of week) 

• use a larger volume of mobile trajectory data, representing more transportation 
network users; 

• model other modes of transportation, such as pedestrians and public and private 
automated transport. 
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