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1. Introduction  
The random walk is an example of application which, when considered can be seen to 
have foundations in a number of every day applications. (Aldious and Fill, 1996) cite the 
example of a chessboard where knight is moved at random to legal positions on the 
board.  
 
Given a graph (G) and a starting point (s), a neighbour is selected at random and a move 
is made to those locations, upon which another neighbor is selected etc. until a pre-
selected point is reached.  This seemingly random selection of points making up this path 
is a random walk across the graph. Where the edges of the graph are weighted then the 
random walk becomes increasingly similar to the Markov Chain. 
 
 
Increasingly, there are many graph based applications where more than a single criteria is 
considered for optimization. Examples can be seen in (Mooney, 2004) and (Chakraborty 
et al., 2005) where evolutionary algorithms (Zitzler, 1999) are applied to multi objective 
route selections. (Gendreau et al., 1994) applies the tabu search  (Glover et al., 1993) to 
the vehicle routing problems. One of the key requirements of these and other 
optimization techniques is the generation of at least one (the tabu search) or more 
(evolutionary algorithms) initial randomly generated candidate solutions.    
 

1.1 Basic notions   
Let G = (V,E) be a connected graph with n nodes and m edges. The degree of any node 
on the graph is the incident of edges on the node. Spatially embedded graphs can be 
considered abstractions of real world networks. Within a spatially embedded network or 
graph coordinate information is stored alongside node and arc information. For instance 
the use of coordinate information across a real world road network allows an accurate 
distance measurement to be calculated between two connected nodes without the need to 
have such stored. The presence of the coordinate information allows such details to be 
inferred. 
 
  



2. Random & Real World Graphs 
The traditional approaches to the solution of graph based problems have been based upon 
randomly generated graph based structures. The work of (Cherkassky et al., 1994) for 
instance resulted in a series of random graph generators and solvers. This work is 
considered to be one of the most comprehensive within the field of shortest path analysis; 
a simple search of CiteSeer (2007) will result in approximately 97 citations for that work.  
 
The use of such graphs however is not without problems. The majority of such generators 
fail to pick up upon the human tendency to cluster together in towns and city. There is a 
clear difference between random network and a real life human based network. 
Unsurprisingly, various algorithms react differently. The work of (Zhan, 2001) suggests 
that the results of previous studies into the shortest path problem may be misleading 
when applied to real world networks. They do however allow for the basic examination 
and completeness of an algorithm prior to further real world testing. Figure xxx presents 
a view of a random graph together with an example of how that graph may differ from a 
similar sized real world graph. Historically the key difference has been seen in the 
underlying size of the graphs. Table 1 presents a subset of graphs used in the recent 9th 
DIMACS Challenge on shortest path analysis. Whereas (Zhan and Noon, 2000) 
suggested that networks may consist of hundreds or even thousands of nodes. Table 1 
demonstrates how modern networks are based upon millions of nodes.  Figures 1 and 2 
show how the basic structure of a graph can differ between real and randomly generated 
graphs. The key difference can be seen in that a real world graph will often contain many 
dead ends (nodes of degree 1). Random generators however have a tendency to produce 
more “connected” graphs.      
 
 
 

 

 

Area Edges Nodes 
Great Lakes 2,758,119 6,885,658 
California & Nevada 1,890,815 4,657,742 
North East US 1,524,453 3,897,636 
North West US 1,207,945 2,840,208 
Florida 1,070,376 2,712,798 
Colorado 435,666 1,057,066 
SF Bay Area 321,270 800,172 
New York City 264,346 733,846 

Table 1.Coverage Areas with Graph Sizes 
 

 

3. Random Walking  
 
Algorithm 1 presents a view of the traditional random walk across a graph. The algorithm 
is passed a copy of the graph structure, together with the start and end nodes. The 



algorithm then enters a loop until a duplicate node is discovered or the target node 
reached. The algorithm adds the source node to the path when leaving the loop. 
 
 
  

 
Figure 1. Example Of A Simple “Real 

World Graph (with Dead-end) 

 
Figure 2. Example of A Complete 

Random Graph 
 
 
 

Algortihm:1 Random Walk 
Data Graph G = (V,E) 

s=Start Node 
t = Destination 

 
 
 
 
 
 
 

Path = null 
Path = Path + s 
node=s 
While (node.Neighbours != t) && (path != cycles) 

node=Random(node.Neignbours) 
Path = Path + node 

End While 
 
Add (t) to path 
 
If (path.ContainsCycles)  

return null  
else 

return path 
End If 

 
Algorithm 1. Traditional Random Walk 

 

3.1 Experimental Design 
 
Table 2 presents a series of graph sizes, ranging from 100 x 300 (nodes/edges) to 100,000 
x 300,000 (nodes/edges) these graphs have been generated using the SPRAND random 
graph generator from Cherkassky et al (1994). A total of 10 graphs of each size have 



been developed. The algorithm above has been applied to the graphs 250 times, with 
random selections for the source and target nodes. In effect a random work has been 
generated for each graph size 2,500 times. Repeat selections of source/target were 
disallowed.   
 

Size Nodes Edges 
Set 1 100 300 
Set 2  1000  

 
 

  
Table 2. Randomly d graph 

 

3.2 Initial Results 

able 3 presents the result of the random walk algorithm on the graphs presented in 

m.   

Set Minimum Maximum Mean (% Covered) 

3000
Set 3 5000 15000
Set 4 10000 30000 
Set 5 15000 45000 
Set 6 100000 300000

 generate Sizes 

 
T
Tables 2 (randomly generated graphs. The results show the Highest, Lowest and mean 
number of edges covered by the distinct path generated by the random walking algorith
 

Set 1 3 26 7.7664 (7.8%) 
Set 2 3 78 33.5144 (3.4%) 
Set 3 5 256 52.9968 (1.1%) 
Set 4 4 426 55.0944 (0.6%) 
Set 5 5 497 71.5688 (0.5%) 
Set 6 6 1343 302.2776 (0.3%) 

Table 3 Network Coverage by Random W

 

he results show that only a gradual increase in the network coverage is achieved through 

4. Random Walking using Heuristics 
tion as part of this study enables the 

, 

 

l 

alking Across  
Various Graph Sizes 

 
T
as the size of the graph increases the minimum number of nodes covered remains around 
the same. The highly connected nature of the graphs would logically play a major part in 
this.  

The real world nature of the graphs under considera
development of heuristics to be developed for the random walk algorithm. The use of 
such heuristics is used to great effect in the A* shortest path algorithm (Ikeda and Imai
1999). The graphs under considerations have either two (distance and transit time) or 
three (distance, transit time and road category) available. Any of which may be used to
form a valid heuristic. The work of (Car, 1997) for example presents a route finding 
algorithm based on road hierarchy.. Others have suggested that people prefer to trave



cross the shortest path, in which either the transit time or the distance would be logical 
heuristics.  
 
 
For the purposes of this work the distance between links is chosen as the appropriate 
metric for the heuristic. Algorithm 2 presents a view of a heuristic driven random walk 
where the nearest neighbour is selected. In order to preserve a reasonable amount of 
“randomness” the algorithm makes use of the degree of the node. If a current node has 
two edges than the one with the shortest distance is selected. If the node has three or more 
edges, then two are randomly selected and the edge with the shortest distance is 
considered.   
 
 
 

Algortihm:2 Random Walk With Nearest Neighbour Heuristic 
Data Graph G = (V,E) 

s=Start Node 
t = Destination 

 
 
 
 
 
 
 

Path = null 
Path = Path + s 
node=s 
While (node.Neighbours != t) && (path != cycles) 

If node.Neighbours.Count = 1 
node=Random(node.Neignbours) 

else if node.Neigbours.Count = 2 
Select Closest Node 

Else if node.Neighbours.Count>3 
Select 2 Node At Random 
Select Closest Node 

End If 
 
Path = Path + node 

End While 
 
Add (t) to path 
 
If (path.ContainsCycles)  

return null  
else 

return path 
End If 

 
Algorithm 3 is similar is to algorithm 2 in that it attempts to maintain a degree of 
“randomness”. However, rather than selecting the closest node of the neighbours, the 
node selected is the node which has the closest distance to the target node. Such an 
algorithm could be used on real world graph where coordinate information for each node 
is available 
 
 



5. Conclusions & Future Work 
The results from indicates that as the size of the graph increase the percentage of 
coverage obtained by a random walk across a random, well connected graph remains 
stable. Further results for this work will evaluate the suitable of heuristic base algorithms 
for random walking.  
 
The traditional approach to the random walk will often fail when applied to a real world 
graph. Randomly generated graphs fail to encapsulate certain notions of human 
behaviour, such as clustering or “dead ends”. Mechanisms need to be developed to deal 
will such cases, and to provide the random walk with the ability to backtrack through the 
graph. Such as ability of currently under development by the authors.      
 
 

Algortihm:3 Random Walk With End Distance Heuristic 
Data Graph G = (V,E) 

s=Start Node 
t = Destination 

 
 
 
 
 
 
 

Path = null 
Path = Path + s 
node=s 
While (node.Neighbours != t) && (path != cycles) 

If node.Neighbours.Count = 1 
node=Random(node.Neignbours) 

else if node.Neigbours.Count = 2 
Calculate distance of Neighbours to t 
Select Closest Node To t 

Else if node.Neighbours.Count>3 
Select 2 Node At Random 
Calculate distance of Neighbours to t 
Select Closest Node To t 

End If 
 
Path = Path + node 

End While 
 
Add (t) to path 
 
If (path.ContainsCycles)  

return null  
else 

return path 
End If 

 
 
Further research is planned that will integrate the heuristic methods developed here into 
multi criteria evolutionary algorithm, tabu search and simulated annealing optimization 
algorithms where it is hoped that the use of heuristics will increase the rate at which 
suitable solutions are found whilst maintaining the diversity required in those solution.  
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