
Heuristically Driven Random Walks Across Large

Scale Graphs

A. C. Olden, G. E. Taylor

1Faculty of Advanced Technology
University Of Glamorgan

Wales, CF15 7NS
Email:aolden@glam.ac.uk

Email:getaylor@glam.ac.uk

1. Introduction
The random walk is an example of application which, when considered can be seen to
have foundations in a number of every day applications. (Aldious and Fill, 1996) cite the
example of a chessboard where knight is moved at random to legal positions on the
board.

Given a graph (G) and a starting point (s), a neighbour is selected at random and a move
is made to those locations, upon which another neighbor is selected etc. until a pre-
selected point is reached. This seemingly random selection of points making up this path
is a random walk across the graph. Where the edges of the graph are weighted then the
random walk becomes increasingly similar to the Markov Chain.

Increasingly, there are many graph based applications where more than a single criteria is
considered for optimization. Examples can be seen in (Mooney, 2004) and (Chakraborty
et al., 2005) where evolutionary algorithms (Zitzler, 1999) are applied to multi objective
route selections. (Gendreau et al., 1994) applies the tabu search (Glover et al., 1993) to
the vehicle routing problems. One of the key requirements of these and other
optimization techniques is the generation of at least one (the tabu search) or more
(evolutionary algorithms) initial randomly generated candidate solutions.

1.1 Basic notions
Let G = (V,E) be a connected graph with n nodes and m edges. The degree of any node
on the graph is the incident of edges on the node. Spatially embedded graphs can be
considered abstractions of real world networks. Within a spatially embedded network or
graph coordinate information is stored alongside node and arc information. For instance
the use of coordinate information across a real world road network allows an accurate
distance measurement to be calculated between two connected nodes without the need to
have such stored. The presence of the coordinate information allows such details to be
inferred.

2. Random & Real World Graphs
The traditional approaches to the solution of graph based problems have been based upon
randomly generated graph based structures. The work of (Cherkassky et al., 1994) for
instance resulted in a series of random graph generators and solvers. This work is
considered to be one of the most comprehensive within the field of shortest path analysis;
a simple search of CiteSeer (2007) will result in approximately 97 citations for that work.

The use of such graphs however is not without problems. The majority of such generators
fail to pick up upon the human tendency to cluster together in towns and city. There is a
clear difference between random network and a real life human based network.
Unsurprisingly, various algorithms react differently. The work of (Zhan, 2001) suggests
that the results of previous studies into the shortest path problem may be misleading
when applied to real world networks. They do however allow for the basic examination
and completeness of an algorithm prior to further real world testing. Figure xxx presents
a view of a random graph together with an example of how that graph may differ from a
similar sized real world graph. Historically the key difference has been seen in the
underlying size of the graphs. Table 1 presents a subset of graphs used in the recent 9th
DIMACS Challenge on shortest path analysis. Whereas (Zhan and Noon, 2000)
suggested that networks may consist of hundreds or even thousands of nodes. Table 1
demonstrates how modern networks are based upon millions of nodes. Figures 1 and 2
show how the basic structure of a graph can differ between real and randomly generated
graphs. The key difference can be seen in that a real world graph will often contain many
dead ends (nodes of degree 1). Random generators however have a tendency to produce
more “connected” graphs.

Area Edges Nodes
Great Lakes 2,758,119 6,885,658
California & Nevada 1,890,815 4,657,742
North East US 1,524,453 3,897,636
North West US 1,207,945 2,840,208
Florida 1,070,376 2,712,798
Colorado 435,666 1,057,066
SF Bay Area 321,270 800,172
New York City 264,346 733,846

Table 1.Coverage Areas with Graph Sizes

3. Random Walking

Algorithm 1 presents a view of the traditional random walk across a graph. The algorithm
is passed a copy of the graph structure, together with the start and end nodes. The

algorithm then enters a loop until a duplicate node is discovered or the target node
reached. The algorithm adds the source node to the path when leaving the loop.

Figure 1. Example Of A Simple “Real

World Graph (with Dead-end)

Figure 2. Example of A Complete

Random Graph

Algortihm:1 Random Walk
Data Graph G = (V,E)

s=Start Node
t = Destination

Path = null
Path = Path + s
node=s
While (node.Neighbours != t) && (path != cycles)

node=Random(node.Neignbours)
Path = Path + node

End While

Add (t) to path

If (path.ContainsCycles)

return null
else

return path
End If

Algorithm 1. Traditional Random Walk

3.1 Experimental Design

Table 2 presents a series of graph sizes, ranging from 100 x 300 (nodes/edges) to 100,000
x 300,000 (nodes/edges) these graphs have been generated using the SPRAND random
graph generator from Cherkassky et al (1994). A total of 10 graphs of each size have

been developed. The algorithm above has been applied to the graphs 250 times, with
random selections for the source and target nodes. In effect a random work has been
generated for each graph size 2,500 times. Repeat selections of source/target were
disallowed.

Size Nodes Edges
Set 1 100 300
Set 2 1000

Table 2. Randomly d graph

3.2 Initial Results

able 3 presents the result of the random walk algorithm on the graphs presented in

m.

Set Minimum Maximum Mean (% Covered)

3000
Set 3 5000 15000
Set 4 10000 30000
Set 5 15000 45000
Set 6 100000 300000

 generate Sizes

T
Tables 2 (randomly generated graphs. The results show the Highest, Lowest and mean
number of edges covered by the distinct path generated by the random walking algorith

Set 1 3 26 7.7664 (7.8%)
Set 2 3 78 33.5144 (3.4%)
Set 3 5 256 52.9968 (1.1%)
Set 4 4 426 55.0944 (0.6%)
Set 5 5 497 71.5688 (0.5%)
Set 6 6 1343 302.2776 (0.3%)

Table 3 Network Coverage by Random W

he results show that only a gradual increase in the network coverage is achieved through

4. Random Walking using Heuristics
tion as part of this study enables the

,

l

alking Across
Various Graph Sizes

T
as the size of the graph increases the minimum number of nodes covered remains around
the same. The highly connected nature of the graphs would logically play a major part in
this.

The real world nature of the graphs under considera
development of heuristics to be developed for the random walk algorithm. The use of
such heuristics is used to great effect in the A* shortest path algorithm (Ikeda and Imai
1999). The graphs under considerations have either two (distance and transit time) or
three (distance, transit time and road category) available. Any of which may be used to
form a valid heuristic. The work of (Car, 1997) for example presents a route finding
algorithm based on road hierarchy.. Others have suggested that people prefer to trave

cross the shortest path, in which either the transit time or the distance would be logical
heuristics.

For the purposes of this work the distance between links is chosen as the appropriate
metric for the heuristic. Algorithm 2 presents a view of a heuristic driven random walk
where the nearest neighbour is selected. In order to preserve a reasonable amount of
“randomness” the algorithm makes use of the degree of the node. If a current node has
two edges than the one with the shortest distance is selected. If the node has three or more
edges, then two are randomly selected and the edge with the shortest distance is
considered.

Algortihm:2 Random Walk With Nearest Neighbour Heuristic
Data Graph G = (V,E)

s=Start Node
t = Destination

Path = null
Path = Path + s
node=s
While (node.Neighbours != t) && (path != cycles)

If node.Neighbours.Count = 1
node=Random(node.Neignbours)

else if node.Neigbours.Count = 2
Select Closest Node

Else if node.Neighbours.Count>3
Select 2 Node At Random
Select Closest Node

End If

Path = Path + node

End While

Add (t) to path

If (path.ContainsCycles)

return null
else

return path
End If

Algorithm 3 is similar is to algorithm 2 in that it attempts to maintain a degree of
“randomness”. However, rather than selecting the closest node of the neighbours, the
node selected is the node which has the closest distance to the target node. Such an
algorithm could be used on real world graph where coordinate information for each node
is available

5. Conclusions & Future Work
The results from indicates that as the size of the graph increase the percentage of
coverage obtained by a random walk across a random, well connected graph remains
stable. Further results for this work will evaluate the suitable of heuristic base algorithms
for random walking.

The traditional approach to the random walk will often fail when applied to a real world
graph. Randomly generated graphs fail to encapsulate certain notions of human
behaviour, such as clustering or “dead ends”. Mechanisms need to be developed to deal
will such cases, and to provide the random walk with the ability to backtrack through the
graph. Such as ability of currently under development by the authors.

Algortihm:3 Random Walk With End Distance Heuristic
Data Graph G = (V,E)

s=Start Node
t = Destination

Path = null
Path = Path + s
node=s
While (node.Neighbours != t) && (path != cycles)

If node.Neighbours.Count = 1
node=Random(node.Neignbours)

else if node.Neigbours.Count = 2
Calculate distance of Neighbours to t
Select Closest Node To t

Else if node.Neighbours.Count>3
Select 2 Node At Random
Calculate distance of Neighbours to t
Select Closest Node To t

End If

Path = Path + node

End While

Add (t) to path

If (path.ContainsCycles)

return null
else

return path
End If

Further research is planned that will integrate the heuristic methods developed here into
multi criteria evolutionary algorithm, tabu search and simulated annealing optimization
algorithms where it is hoped that the use of heuristics will increase the rate at which
suitable solutions are found whilst maintaining the diversity required in those solution.

7. References

ALDIOUS, D. & FILL, J. (1996) Reversable Markov Chains And Random Walks On

Graphs, Book Draft.
CAR, A. (1997) Hierarachical Spatial Reasoning: Theorectical Consideration and Its

Application to Modeling Wayfinding. Department Of Geoinformation. Technical
University Of Vienna.

CHAKRABORTY, B., MAEDA, T. & CHAKRABORTY, G. (2005) Multiobjective
route selection for car navigation system using genetic algorithm. Proceedings of
the 2005 IEEE Mid-Summer Workshop on Soft Computing in Industrial
Applications.

CHERKASSKY, B., GOLDBERG, A. & RADZIK, T. (1994) Shortest Path Algorithms:
Theory and Experimental Evaluation. Proceedings Of The 5th Annual ACM-SIAM
sympoosium on Discrete algorithms. Arlington, Virgina.

CITESEER(2007) http://citeseer.ist.psu.edu/
GENDREAU, M., HERTZ, A. & LAPORTE, G. (1994) A Tabu Search Heurtisitc For

The Vehicle Routing Problem. Management Science, 40, 1276-1290.
GLOVER, F., TALLIARD, E. & DE-WERRA, D. (1993) A Users Guide To The Tabu

SEarch. Annals Of Operations Research, 41, 3-28.
IKEDA, T. & IMAI, H. (1999) Enhanced A* Algortihms for multiple alighnments:

optional alignments for several sequences and k-opt alignments for large cases.
Theorotical COmputer Science, 210, 341-374.

MOONEY, P. (2004) Multicriteria Path Optimizartion On Graphs. Department Of
Computer Science. National University Of Ireland Maynooth.

ZHAN, B. (2001) Three Shortest Path Algorithms on Real Road Networks: Datastrucures
and Procedures. Journel Of Geographic Information and Decison Analsyis, 1, 69-
82.

ZHAN, F. B. & NOON, C. E. (2000) A Comparision Between Label Setting and Label
COrrecting Algorithms for Computing One-toOne shortest Paths. Jounral Of
Geographic Information and Decision Analysis, 4, pp 1-11.

ZITZLER, E. (1999) Evolutionary Algorithms for Multiobjective Optimization:Methods
and Applications. Computer Engineering and Networks Laboratory. Zurich,
Swiss Federal Institute of Technology.

	1. Introduction
	1.1 Basic notions

	2. Random & Real World Graphs
	3. Random Walking
	3.1 Experimental Design
	3.2 Initial Results

	4. Random Walking using Heuristics
	5. Conclusions & Future Work
	7. References

