
Grid Enabling Geographically Weighted

Regression

Daniel J Grose1, Richard Harris2, Chris Brundson3, and Dave
Kilham2

1Centre for e-Science , Lancaster University , United Kingdom
2School of Geographical Sciences , University of Bristol , United Kingdom

3Department of Geography , University of Leicester , United Kingdom

April 25, 2007

1 Introduction

The application of high performance computing to spatial analysis has long
been of interest to geographical scientists and has spearheaded research in
computations. Of particular note is the pioneering work undertaken by Stan
Openshaw at the University of Newcastle and at the Centre for Computa-
tional Geography at Leeds University, of which an exemplar is the Geograph-
ical Analysis Machine [11]. More recently, Martin [10] has identified the po-
tential for geocomputation to develop under the rubric of high performance
computer (grid) networks and e-(electronic) social science. He identifies four
essential research issues for e-social science: automated data mining; visu-
alization of spatial data uncertainty; incorporation of an explicitly spatial
dimension into simulation modelling; and neighbourhood classification from
multi-source distributed datasets.

Missing, perhaps, from Martin’s list is the use of computational grid to
’speed up’ the repetitious processes of many spatial statistics. What GAM,
GWR (see below) and other methods of spatially localized analysis have in
common is a general sequence of

1. calibrating the size of the kernel or search window to the amount of
spatial autocorrelation found in the attributes of the data being exam-
ined

1



2. creating spatially overlapping subsets of the data to reflect this

3. allowing the kernel to pass from one subset to the next, applying a
statistical test in each

4. simulating confidence intervals for the statistical result by detaching
the data attributes from the geographical coordinates at which they
were captured, then repeatedly reattaching the attributes to randomly
selected locations and applying the test again.

If a study region is divided into n overlapping grid squares then the first
and third stages of the sequence are completed by allowing the kernel to
expand from a minimum to a maximum width through z increments and
determining an optimal result. This requires n× z processes. For the fourth
stage (and assuming the kernel size is now fixed), the data are redistributed
m times, requiring a further n× m tests. In total, then, the method invokes
approximately n(z + m) processes (plus others to subset the data, run the
statistical tests and so forth).

The attraction of high performance computing and, in particular, the use
of parallelisation, arises from the course granularity of the overall sequence
of events (granularity being the size of computation that can be performed
between communication or synchronization points [9] [12]. For many spatial
statistical procedures, each of the stages of calibration, fitting and assessing
significance can be parallelised with processes that will operate without com-
munication to the others (since, for example, the outcome of a model fitted
to one spatial subset of the data does not affect or modify the outcome of
a model fitted to another). In principle, each of the n(z + m) processes can
be sent to separate computational nodes; their outputs need only be pooled
and assessed once the results have been established.

2 Geographically Weighted Regression (GWR)

Geographically Weighted Regression (GWR) builds on traditional linear re-
gression methods by permitting the relationships between variables to vary
spatially. This is achieved by allowing the linear predictor to be a function
of the spatial coordinates (u, v) as follows.

η =
p+1∑

j=1

βj(u, v)xj (1)

Here the xj are the p+1 explanatory variables and the β1(u, v),β2(u, v),...,βp+1(u, v)
are functions (assumed continuous) in u and v. Thus, given a set of observa-
tions {yi} corresponding to the set of realisations of the dependent variables

2



{(xi,1, xi,2, . . . , xi,p+1)}, it is necessary to determine the βj(u, v). To this end
GWR assumes that the βj(u, v) exhibit little variation close to a given yi

that is to be estimated using standard (but weighted - see below) regression
methodology. This allows the βj(u, v) to be approximated using the i × j

constants βi,j(ui, vi) that are evaluated in the vicinity of the yi using standard
regression methodology.

As noted in [6], the assumption of constancy in the parameters in the
proximity of yi provides a straightforward means of estimating the βj(u, v)
but results in a bias in the local regression coefficients. After all, if the rela-
tionship between y and the xj varies continuously across space then this must
be true even within the vicinity of the point of interpolation. To reduce the
effect of bias, the contribution of sample points in the local regression model
are weighted according to their proximity to yi. Typically, the weighting
function is parameterised, and the GWR methodology employs a calibration
process which sets out to calculate the parameters of the weight functions
so as to form an appropriate trade off between bias and standard error in
the prediction of the overall model (it clearly is necessary to use some data
around the point of interpolation to estimate its value: too few points and
the estimate will lack precision; too many points will smooth out the local
relationship).

3 Scaling GWR to the Grid

The calibration of the weight function employed by GWR determines the
number of neighbouring points of yi to incorporate in the local regression
model. This can be defined by the number of neighbours that have to be
considered or by defining a radius about yi from within which points should
be included (i.e. either the number of neighbours or the geographical space
around yi may be fixed). In either case, it is necessary to determine (and
rank) the inter point distances either for the complete data set being con-
sidered or to use a method of spatial indexing. Though more computation-
ally demanding, calculating the distances for the complete data set retains
the greatest flexibility when applying GWR. For n data sample points, this
operation is O(n2). Even ignoring the computational cost associated with
determining the parameters of the weight functions and performing the local
regression for each data point, the method does not scale well with n. Figure
1 shows the CPU time for calculating the inter point distances vs the number
of points in a data set. The results were obtained by using the spDistsN1
function from the R sp package which is employed by the GWR package for

3



R, spgwr1. Clearly, if large data sets are to be considered, either a differ-

1000 2000 3000 4000

0
2

4
6

8

number of points

cp
u 

tim
e 

(s
ec

on
ds

)

Figure 1: O(n2) nature of nearest neighbours calculation.

ent modelling approach has to be adopted or alternatively, the use of High
Performance Computing (HPC) facilities are required [5].

Fortunately, the methods employed by GWR are relatively simple to
adapt to large HPC systems on a computational grid. For example, in the
case of calculating the inter point separations, an existing k Nearest Neigh-
bours algorithm can be employed which readily divides across multiple com-
pute nodes [7]. For the algorithm employed in [7], given n data points and
m processors, the compute time τ reduces as

τ(m)

τ(1)
=

n(2 − 1

m
) − 1

m(n − 1)
(2)

When the number of data points is much greater than the number of proces-
sors i.e. when n >> m, (which is the normal case), then

τ(m)

τ(1)
'

2

m
(3)

1Tests were run using R on a single processor Intel processor PC

4



In a test case of n = 200000 and m = 100 the average user time per process
was 885 seconds and required 1.5Gb of memory. These requirements are well
with the scope of most modern HPC facilities, including the UK’s developing
computational grid infrastructure (The National Grid Service).

4 Deploying GWR on the Grid

The nature of the GWR methodology makes implementing it on parallel HPC
architectures reasonably straightforward. However, although research com-
munities are adopting the use of Grid based HPC resources, the barriers of
entry still remain high [1]. This is primarily due to the need for most users
to interact directly with the middleware (for example, the Globus toolkit,
OpenSSH and myproxy) that are used to access the Grid. Although there
are a number of interfaces specifically designed to simplify the process of
job submission and monitoring (GridSAM, AHE [2] etc), none of these are
application domain specific. One approach to make methodologies available
on the Grid more accessible is a to provide a Service Oriented Architec-
ture (SOA) for the methodologies. This enables the services to be accessed
directly from client systems via interfaces which reflect the context of the
application domain. Furthermore, since much software used by researchers
is extensible in some way, provision of a SOA allows the client to access the
Grid from within a familiar environment.

Steps toward providing an architecture to host SOA’s have been taken
as part of several projects, for example the GROWL (Grid Resources on a
Work Station) library [8] which has been used to host applications within
several client environments such as R [4] [3].

4.1 Providing SOA’s using the GROWL client server
architecture

Amongst other things, GROWL provides for a three tier client/server archi-
tecture which can be used to support the development of SOA’s
(figure 2). The first tier consists of the client interfaces, specialised to specific
client application requirements, and integrated into the client server archi-
tecture using modules created from service interface definitions published in
an Interface Definition Language (IDL) file. The IDL files are generated and
published by the developers of the services represented in the third tier of
the architecture.

The second tier consists of the GROWL server. The main functions of
the server are threefold:

5



Figure 2: GROWL Client - Server Architecture

1. Authentication of clients (using Distinguished Names obtained from
the clients certificates).

2. Hosting services by acting as a proxy for the service interface.

3. Mapping of client requests to specific service instances.

The third tier consists of the services themselves. A service is defined
by its interface which is published using the IDL. Importantly, an individual
service may be implemented in a number of different ways, the particular
implementation varying according to the requirements of the system(s) host-
ing and the client(s) accessing it. It may, of course, also vary in time as the
requirements of a service implementation change. Services are created by
service developers and the interface definitions for a service can be created
automatically from existing code using GROWL utilities.

The key advantages of this three tier client/server architecture are:

• Clients, server and services may be upgraded or replaced independently.

6



• A single interface may correspond to many service implementations.

• All services are accessed via a single (secure) port.

• Services have persistence. This is important since the services are used
asynchronously.

• Developers of client applications can program against an interface in a
language and platform independent manner and need no understanding
of the service logic.

• Developers of services need not be aware of the client application logic
and do not require an understanding of web services.

5 Summary

The full paper demonstrates how the existing spgwr package for R has been
adapted for use on HPC resources on the Grid and the performance of the
package is analysed in detail. The manner in which the GWR methodology
is hosted as a service on the Grid using a SOA is detailed. Furthermore, the
SOA is employed to provide an R package for accessing Grid based GWR
from a remote client system .

6 Acknowledgments

This research is funded by the National Centre for e-Social Science, Small
Grants Projects, RES-149-25-1041. The authors of the spgwr package are
Roger Bivand and Danlin Yu.

References

[1] Johnathon Chin and Peter Coveny. Towards tractable toolkits for the
grid: a plea for lightweight, usable middleware. Reality Grid, June 2004.
http://www.realitygrid.org.

[2] P.V. Coveney, R.S. Saksena, S.J. Zasad, M. McKeown, and S. Pickles.
The application hosting environment: Lightweight middleware for grid-
based computational science. Computational Physics Communications,
2007. In press.

7



[3] Rob Crouchley, Ties van Ark, John Pritchard, John Kewley, Rob
Allan, Mark Hayes, and Lorna Morris. Putting social science ap-
plications on the grid. In First International Conference on e-

Social Science. National Centre for e-Social Science, June 2005.
http://www.ncess.ac.uk/events/conference/2005/.

[4] Daniel J Grose et al. sabreR : Grid-enabling the analysis of multi-process
random effect response data in R. In Second International Conference

on e-Social Science. National Centre for e-Social Science, June 2006.
http://www.ncess.ac.uk/events/conference/2006/.

[5] Richard Harris et al. Developing Grid enabled spatial re-
gression models. In Second International Conference on e-

Social Science. National Centre for e-Social Science, June 2006.
http://www.ncess.ac.uk/events/conference/2006/.

[6] A. Stewart Fotheringham, Chris Brundson, and Martin Charlton. Geo-

graphically Weighted Regression - the analysis of spatially varying rela-

tionships. Wiley, 2002. ISBN 0-471-49616-2.

[7] D.J. Grose. Testing the north west grid using a k nearest neigh-
bours algorithm. Technical report, North West Grid, November 2006.
http://www.nw-grid.ac.uk/?q=nodes/uola/testbed/.

[8] Mark Hayes, Lorna Morris, Rob Crouchley, Daniel Grose, Ties van Ark,
Rob Allan, and John Kewley. Growl: A lightweight grid services toolkit
and applications. In Simon Cox and David W. Walker, editors, Proceed-

ings of the UK e-Science All Hands Meeting. EPSRC, September 2005.
epubs.cclrc.ac.uk/bitstream/920/460.pdf.

[9] I. Lumb. Hpc grids. In A. Abbas, editor, Grid Computing: a Practi-

cal Guide to Technology and Applications, pages 119–33. Charles River
Media, Hingham, MA, 2004.

[10] D. Martin. Socioeconomic geocomputation and e-social science. Trans-

actions in GIS, (9):1–3, 2005.

[11] S. Openshaw, M. Charlton, C. Wymer, and A.W. Craft. A mark i geo-
graphical analysis machine for the automated analysis of point datasets.
International Journal of Geographic Information Systems, (1):335–58,
1987.

8



[12] B. Wilkinson and M. Allen. Parallel Programming: techniques and ap-

plications using networked workstations and parallel computers. Prentice
Hall, Upper Saddle River, NJ, 1999. ISBN = 1-314-0563-2.

9


