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1. Introduction 
For several decades the observed decrease of rainfall in the west African Sahel (WAS) 
between the late 1960s and 1990 has been the focus of climate research (e.g., Folland et 
al. 1986, Nicholson 1985, Nicholson and Palao 1993, Zeng et al. 1999). Recently Zeng 
(2003) identified two main hypotheses: anthropogenic factors such as overgrazing and 
deforestation that increase surface albedo and reduce moisture supply to the atmosphere 
and lead to less precipitation; the second invokes large-scale atmospheric circulation 
changes triggered by multidecadal variation in global sea surface temperature. These are 
important hypotheses and are typically tested by comparing empirical evidence or model 
predictions against ‘observations’ of Sahelian rainfall. The outcomes of testing these 
hypotheses may have considerable influence on the future direction of scientific research 
and may provide a foundation for understanding the environmental systems for the 
region. However, the rainfall observations are assumed to represent the underlying 
rainfall population. They are aggregated from relatively few stations in space, when 
considering the area of the WAS and variability of its rainfall in space and time. There 
have been no published assessments of uncertainty surrounding the spatially aggregated 
annual rainfall in the WAS. 

The aim here is to compare the WAS time series produced using the traditional 
climatological deterministic approach with that produced using stochastic simulations 
and the latter approach will be used to quantify uncertainty in the estimates. The 
implications are discussed of these estimates of uncertainty in the WAS rainfall for 
previous work that compared the results of empirical and model-based predictions to 
previous estimates of WAS rainfall. 

2. Data and Methods  

2.1 Rainfall observation records  
We used the Global Historical Climatology Network (GHCN v.2) rainfall data (Petersen 
et al. 1997) and extracted rainfall stations for the years between 1930 to 1990 inclusively, 
within the west African Sahel (WAS) following the definition of Nicholson (1993; 10-
20°N, -20°W to 20°E). We transformed the station locations held using latitude and 



longitude to provide an equal area projection of Cartesian co-ordinates. In the WAS most 
rainfall coincides with the summer months (defined here as June, July, August and 
September). We extracted from the database only stations that had recorded rainfall for 
all of the summer months in any one year. 

2.2 Rainfall anomalies and inverse-distance weighting  
The conventional approach in climatology to removing the influence of location on the 
estimate of the spatial mean is to calculate the inverse-distance weighted rainfall 
anomalies. This approach requires that the stations used in the analysis have continuous 
or nearly continuous (allowing for some missing) data. Thus, the extracted data were 
filtered using the requirements of the calculation of inverse-distance weighted anomalies. 
A reference period of 1961 to 1990 was set to achieve the maximum number of stations 
with the minimum amount of missing data (29%). Rainfall anomalies were calculated 
using the method described by Jones and Hulme (1996) and the inverse-distance area-
weighting scheme following Dai et al. (1997). 

2.2 Sequential (median indicator approximation) simulation  
An alternative approach to estimating the weights for each station in the calculation of the 
spatial mean was performed using cell-declustering (Deutsch, 1989). It is commonly used 
in geostatistical analyses (Isaaks and Srivastava, 1989) and is appropriate to 
climatological data (Chappell and Ekström, 2005) where spatial data are clustered in 
either high- or low-valued areas. 

Despite strong gradients in rainfall in x- and y-directions, there were insufficient data 
to reliably model the anisotropic spatial variation (Webster and Oliver, 1992). 
Consequently, omni-directional (isotropic) indicator variograms of rainfall were used to 
calculate the average variation at several thresholds in all directions. Unfortunately, 
sample indicator variograms are not well-defined at the margins or extremes of a 
distribution because they depend on the spatial distribution of only a few pairs of 
indicator data. Nevertheless, the magnitude and spatial connectivity of extremes in 
rainfall data are particularly important to spatial simulations and so too are the number of 
thresholds used in the simulation. The data are equally distributed at the median and the 
variogram at thresholds other than the median may be inferred using the mosaic model 
(Journel, 1984). This approximation was known to be at the expense of less flexibility in 
comparison with direct indicator coding at several thresholds. However, the need for 
calculation and model-fitting of variograms for multiple thresholds (e.g., 5 thresholds) for 
each year between 1930 and 1990 (61 years) would require a considerable amount of 
modelling work (305 indicator variograms). The mosaic model offered a valuable 
compromise of reliable variograms at the important margin of the distributions at the 
expense of restricted spatial structural information at each threshold. Furthermore, the 
median approximation also reduces the number of order relation deviations caused by the 
integration of maps produced separately for each threshold (Journel, 1984).  

The declustered rainfall cumulative distribution function was calculated for all 
stations’ annual summer rainfall between 1930 and 1990 inclusively (61 cumulative 
distributions). The rainfall for K=5 quantiles (10, 25, 50, 75 and 90%) were established 
each year (305 rainfall values) and were also used in the simulations. These percentiles 
were used to transform the rainfall values into indicator variables.  



 The median sample indicator isotropic variogram of annual rainfall data was 
calculated to approximately one third (1500 km) of the maximum separation distance 
between rainfall stations. These variograms were fitted, using weighted least squares, 
with several models authorised for kriging (linear, spherical, exponential, power, and 
circular; Webster and Oliver, 2001). The models that fitted best, in the least-squares 
sense, (Spherical and Exponential) were selected using the square root of the mean 
squared difference between the model and the observations (RMSE). Sequential indicator 
simulation was used here to generate 300 realisations of rainfall and honour the values of 
the rainfall stations each year, reproduce (approximately) the declustered sample 
histogram and the covariance models for the five thresholds using the median indicator 
approximation (Deutsch and Journel, 1998). 

3. Results  
The means of the 300 rainfall realisations (maps) provided distributions of values for 

each year. The percentiles of the mean realisations distribution are used to characterise 
the spatial uncertainty of rainfall over time (Figure 1).  
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Figure 13. Annual variation in summer rainfall for selected stations using the inverse-

distance weighted anomalies, the declustered rainfall and uncertainty error bars 
represented by the 5th and 95th percentiles of the 300 averages of the simulation 

realizations. 
 

The median of the mean distribution is shown in the centre of the 5th and 95th percentile 
error bars. There is a strongly cyclical pattern in annual rainfall. Uncertainty during the 
period 1930 to 1935 is noticeably larger than other years. There appears to be no 
evidence of decreasing rainfall. The well known drought years of 1972 and 1984 show 
much smaller values of rainfall and reduced uncertainty than other rainfall years. The 



area-weighted time series mostly exceed the 95th percentile of the simulation distribution. 
Notable exceptions occur between 1978 and 1989 when inverse-distance weighted 
anomalies are well within the range of uncertainty. This comparison demonstrates that 
these area-weighting techniques provide time series for the WAS which are largely an 
extreme realisation of the simulated ensemble distribution.  

4. Discussion  
The annual rainfall distributions show uncertainty (average inter-quartile range = 26 mm; 
average standard deviation = 19 mm) in the mean annual summer rainfall for the WAS. 
That uncertainty is larger between 1930 and 1935 than later in the period and appears to 
be strongly cyclical. The uncertainty is notably smaller during the notorious drought 
years of 1972 and 1984 than other years during the period. The uncertainty in the WAS 
time series is so large that it casts doubt on the existence of desiccation. That pattern of 
desiccation is also less apparent when those drought years are removed from the time 
series. The uncertainty surrounding the rainfall estimates complicates its comparison with 
empirical evidence of related variables e.g., soil dust (Prospero and Lamb, 2003) or 
model-based predictions of rainfall. Furthermore, the long-term (1930-1990) mean 
annual rainfall of the area-weighted estimates (490 mm and 501 mm for the inverse-
distance and declustered area-weighting techniques, respectively) are approximately 8% 
and 10%, respectively larger than the long-term mean of the median annual simulation 
realisations (449 mm). 

5. Conclusion  
The analysis provided the first estimates of the temporal variation in spatial 

uncertainty of west African Sahel (WAS) rainfall. The established time series of WAS 
rainfall mostly exceeded the 95th percentiles of the annual simulation realisations and the 
area-weighted long-term mean (490 mm) was about 8% larger than that of the simulation 
realisations (449 mm). The variation in estimates of mean annual rainfall and the 5th and 
95th percentiles of the uncertainty distribution was considerable. The results showed that 
uncertainty in the mean annual summer rainfall was so large that it confused the pattern 
of desiccation in the region that was previously commonly accepted. The uncertainty in 
desiccation rendered inconclusive previous comparisons between WAS rainfall and 
empirical evidence from related variables and model-based predictions. The results have 
important implications for future climatological work particularly as all published 
regional, hemispheric, and global time series of temperature and precipitation are based 
on area-weighted averages without expressions of spatial uncertainty.  
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