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Abstract 
Although increased exploration of large-scale databases has provided the impetus for 
better detection and analysis of spatial clusters, there is slow progress in developing 
clustering algorithms for classifying space-time multidimensional attributes and space-
time-attribute interactions. The objective of this study is to enhance the genetic algorithm 
for detecting clusters in spatiotemporal or more complex hyperspace. Our motivation is 
guided by the idea of representing the gene structure using an elliptic cylinder allowing 
the detection and analysis of spatial clusters that have space-time components or space-
time-attribute dimensions. A more sophisticated gene representation through elliptic 
cylinders can model variable of spaces of two dimensions and greater. To assess the 
method, we employed a published real-world dataset with known spatiotemporal clusters 
of brain cancer incidence in New Mexico. Experimental results are compared with the 
results obtained from the very popular cluster detection method, Kulldorff’s space-time 
scan statistic. The results indicate that the proposed method provides a better 
representation of clusters in space-time and space-time-attribute interaction at faster and 
more computationally efficient runtime than Kulldorff’s method. 

1. Introduction  
Identifying clusters where there is higher-than-expected number of cases has been the 
subject of much research in geographic information science, epidemiology, criminology, 
and other fields (e.g. Snow 1855; Mantel 1967). In epidemiology and criminology, 
objects may be individual cases, aggregated into different administrative regions, or 
grouped into different time periods. Because the number of cases follows Poisson 
distribution, under the null hypothesis, the expected number of cases in each area is 
proportional to the size of its background population at risk if there are no covariates 
(Kulldorff 2005). Scientists therefore are interested in finding the reasons that can explain 
where spatiotemporal factors where higher-than-expected number of events occurs.  

Although many methods have been developed for spatial clustering, there is still a 
great need to develop clustering algorithms accounting for space-time-attribute 
interactions with generalized assumptions. Space-time-attribute interactions may have 
hidden patterns (Turton et al. 2000). Pure spatial clustering methods tend to ignore totally 
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these interactions. In addition, most algorithms assume clusters to be in circular shape, 
such as Geogrpahic Analysis Machine (GAM; Openshaw et al. 1987), Map Explore 
(MAPEX; Openshaw and Perrée 1996). This assumption is generalized in PROCLUDE 
(Conley et al. 2005) that clusters are represented by horizontal and vertical ellipses. 
However, geographic clusters may be elongated with some kind of orientations, which is 
previously unknown. Although most methods are good at detecting irregularly shaped 
clusters, such as DBSCAN (Ester et al. 1996), CHAMELEON (Karypis 1999), 
AUTOCLUST (Estivill-Castro and Lee 2000), they are limited in exploring the space-
time-attribute interactions. Therefore, clustering methods that can detect diagonally 
elongated clusters in both space and time are still limited and have not been fully 
developed.  

The objective of this study is to develop a clustering method accounting for space-
time-attribute interactions using genetic algorithms (GA). GAs have been proven 
effective in searching spatial clusters, such as MAPEX, PROCLUDE, and Hobbs and 
Goodchild’s method (Hobbs and Goodchild 1996). However, few efforts have been made 
to use GAs for spatiotemporal clustering. Our motivation is therefore guided by the idea 
of using elliptic cylinder search window to identify clusters in space-time-attribute 
interactions. 

2. Proposed genetic algorithm for spatiotemporal cluster 
detection and analysis 

2.1 Representation of individuals  
In our proposed genetic algorithm, each individual is an elliptic cylinder search window 
with an elliptic base and with height corresponding to time. The elliptic base covers less 
than or equal to half the total study area. The height reflects any possible time interval of 
less than or equal to half the total study period.  

Each individual has 7 parameters: centroid (x, y), semi-major axis (a), semi-minor axis 
(b), an orientation angle (θ) from the horizontal line to the major axis, starting time (Ts), 
and time interval (Tin). The time period ranges from Ts to Ts+Tin. A criticism may exist 
that parameters (a, b and θ) are redundant if the cluster is circular or close to circular. 
Given that the shapes of clusters are usually previously unknown in real world; the 
proposed method generalizes the assumption, thus providing a higher degree of freedom. 
One concern, however, is that the proposed algorithm is not very robust in detecting 
irregularly shaped clusters; this is mainly because our focus, at least for now, is to 
develop an algorithm that captures spatiotemporal factors.  

2.2 Population initialisation  
A population of n individuals is randomly generated. The encoding process defines low 
and high bounds to each parameter. Therefore, each individual elliptic cylinder search 
window is located within the study area and within the study period.  

2.3 Fitness evaluation  
Fitness evaluation is the key step to ensure that better fit individuals can survive into next 
generation. In health or crime studies, cases are assumed to be Poisson distributed with 



constant risk over space and time under the null hypothesis. In order to account for 
population at risk and relevant covariates, the fitness function is assigned as follows: 

,
P
pCcFitV −=       (1) 

where c is the observed number of cases contained in an elliptic cylinder, p is the 
background population contained within the elliptic cylinder, C is the total number of 
cases observed in the study area and period, and P is the total population in the study area 
and period.  

2.4 Selection  
The selection operation selects individuals from the current population for genetic 
reproduction, crossover, and mutation operations. In the selection process, the fitness 
value of each individual is calculated. High-quality individuals have a higher chance to 
be copied into next generation. The selection operator is implemented using a stochastic 
universal sampling method (Goldberg 1989).  

2.5 Crossover  
The crossover operator exchanges genes between two parent individuals in order to create 
new child phenotypes. The pre-specified probability c is used to select a proportion of 
individuals for crossover. For example:  
Parent 1: ( )1111111 TinTsbayx θ  
Parent 2: ( )2222222 TinTsbayx θ . 

If the crossover point is 6, the result after crossover will be (Figure 1): 
Child1= ( )1211111 TinTsbayx θ  
Child2= ( )2122222 TinTsbayx θ . 
 

 
Figure 1 graphically illustrates a crossover example. The two parents exchange the 6th 

variables. 

2.6 Mutation 
Mutation is used to make a random change to an individual to increase or maintain 
population diversity. In the proposed genetic algorithm, the mutation operation will 
change one of the 7 parameters. The example below indicates how a new individual is 
created by mutation (Figure 2): 

Parent individual: ( )1111111 TinTsbayx θ  



Randomly choose 1st parameter as the mutation point. The mutation operation 
generates a new individual as: 

New individual: . ⎟
⎠
⎞⎜

⎝
⎛ ′

1111111 TinTsbayx θ

 
Figure 2 graphically illustrates a mutation example: the mutation point is on position 1. 

2.7 Termination  
The proposed algorithm is terminated after a pre-specified number of generations. During 
the previous generation to the next, if the fitness of an individual is larger than 0, which 
means the observed number of cases is larger than what is expected based on its 
population size, this individual will be exported as a potential cluster.  

3. Application  
Experimental data was obtained from http://www.satscan.org/datasets/. The real world 
dataset shows the spatial distribution of brain cancer incidence in New Mexico. The 
dataset has spatiotemporal attributes and is appropriate for testing the proposed genetic 
algorithm. The proposed GA is coded in MatLab 7.1 within Chipperfiled’s GA toolbox. It 
runs on Dell workstation with XeonTM 2.66 GHz CPU and 2.00 GB RAM. Figure 3 
shows two clusters of brain cancers. The time period of the first cluster is between 1985 
and 1989. The second cluster has a time period of 1988–1989. Results are consistent with 
findings from Kulldorff’s SatScan.  
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Figure 3 shows two spatiotemporal clusters of brain cancer incidence in New Mexico 

from 1973–1991. 

4. Discussion and Ongoing Research 
A GA-based approach has been presented to detect spatiotemporal clusters. The 
algorithm is suited to identifying clusters of rates/risks in relation to underlying 
populations at risk when both space-time and space-time-attribute are considered. The 
application of the approach shows that this method has great potential for spatiotemporal 
cluster detection. 

In ongoing research, we are addressing the following issues: 
1) How will a parameter configuration impact the performance of this genetic 

algorithm? How should a configuration be determined when the clusters are 
previously unknown? 

2) How does this method perform with different datasets? Can it deliver runtime 
saving that a machine learning method can offer and at the same time not sacrificing 
cluster accuracy?    

3) How does this GA perform compared against other methods? Under what 
condition will this genetic approach outperform others, and vice versa? How can this 
GA be extended to account for irregularly shaped clusters?     
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