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1 Introduction

Inference for random processes depends on the estimatitie ddng-run variance of a statistic.
Commonly used approaches in time series analysis for egtigntite long-run variance include
bootstrap approaches and the class of heteroskedastiditguaocorrelation consistent covariance
estimators. These approaches have been generalized twittepbint processes and continuous
spatial processes, but areal data have received only stanti@n as of yet. This paper does not
provide any new theoretical results, but provides a haarssgument why these methods might
work with census-type data. This argument is quite triilalf we can provide no evidence of
the application of these methods in the literature. Prelany results demonstrating the simple
application of block bootstrap methods to these data asepted.

The two primary ways of estimating the long-run variance afean are i) heteroskedasticity
and autocorrelation (HAC) variance estimators and ii) boapsand subsampling methods that re-
sample the data in blocks that are large enough to presergk afiihe dependence in the original
dataset. The HAC methodology consists of a weighted sumeoéthpirical covariance matrix —
assigning weights in such a manner that positive definiteisesnsured (Newey and West, 1987).
Importantly for the current paper, this method may be attevely represented as an estimator for
the spectral density of the process at the zero frequengy.riiéthod has seen only limited appli-
cation in spatial settings to date. Conley (1999) proposesitéthod for application to stationary
data located on a lattice. Anselin (2002), however, suggéstt this method is inappropriate for
areal data on a lattice since the stationarity assumptionatigenable in many circumstances.

A HAC estimator for areal data has been proposed recentlyabgjiin and Prucha (2007) (KP
henceforth). That estimator too presupposes that the dateepresented on a lattice, but does
not place strong stationarity assumptions on the data. RHtae assuming stationarity directly,
Kelejian and Prucha instead assume that the sum of the aocarmatrix is appropriately bounded.
The KP estimator, however, presupposes that the areal smyplits can be situated on a lattice
with an appropriate (not necessarily Euclidean) metricattarizing the distance between areal
units. Kelejian and Prucha further demonstrate that thenatr remains consistent if the lattice
metric contains measurement error.

In contrast to the HAC estimators, the bootstrap methodsgtmating the long-run variance
rely on sampling large, contiguous blocks of data, so thatdépendence structure is preserved
within each block. Bhimann and Kinsch (1999) show that the block bootstrap variance estirsat
are asymptotically equivalent to weighted periodogranmesgbrs of the spectral density at the zero
frequency.

The bootstrap has been studied much more that the HAC variesiimator in the context
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of spatially dependent data. Bootstrap methods for regukantl irregularly sampled spatially
dependent punctile data have been proposed in the literatgge Lahiri (2003); Loh and Stein
(2004); Lahiri and Zhu (2006) and the references thereim. Blbck bootstrap has not been applied
in an areal data sampling context yet.

The current paper offers a heuristic argument suggestagpttocess of averaging point data
in to areal sampling units does not alter the value of thetspladensity at the zero frequency. This
suggests that block bootstrap and HAC methods may be eesilglated to the setting of areally
averaged data. In this paper, we pursue the behavior of five béock bootstrap when applied
to areally averaged data, as represented by a choropleth Iinagay also be mentioned that the
HAC and bootstrap methods are not mutually exclusive. @avend Hinkley (1997) shows that
the bootstrap may be improved by choosing an appropriatiestization of the statistic; the HAC
estimator offers such a studentization. Simulation ewdesuggests that that the performance
of the bootstrap method is improved by studentizing thevede by the HAC variance estimate
(Goncalves and White, 2005; Romano and Wolf, 2006).

2 Problem Formulation

Let a population be represented{¥(s), N(ds)}, whereZ(bfs) is a covariance stationary random
field on the spatial domai € R2 with covariance functior’'(h), and N (ds) is the population
within regiond(s). Let Y (s) denote the representation 8{s) by a choropleth map defined by
regionsv,. The sef{v, : k= 1,..., K} are a complete partition of the domaihinto K disjoint
subregions. The population of each regionvis = fsevk N(ds). The choropleth variable is thus
related to the underlying population via

1
Y(s) = Xk: Is € vy / Z(s)N(ds).

[SUA

The variableY (s) is simply the value of the choropleth map at any locatonin typical ap-
plications with census-type data, the sample informatizalable to the researcher is the set
{Y (s), Ny, v}, or occasionally{ Y (s), N (s), v } if a detailed population density map is available.

We restrict ourselves in the current case to making infex@mcthe variable:;. The distribu-
tion of the sample mean &f (were it available) is/N(Z — pz) ~ N(0,0%), whereo?, is the
long run variance of.

We will consider here, the population weighted choropletipriiy (s) = Y (s)N(ds). Itis
obvious that the population weighted mean of the choroptetp is equivalent to the mean of the
underlying population, i.euz = [ Y (s)N(ds) = Yy. It can also easily be shown that the spectral
density at the zero frequency of the population weightedapleth variableYy is equivalent to
the spectral density at the zero frequency of the randonabia¥, and that the spectral density
of Yy is continuous (details appear in the full-length versiohhese two facts suggest that the
population weighted choropleth maf has the same mean and long-run variance as the the latent
population variableZ. In general, the statistics afy and Z are not equivalent, antfy does
not have a stationary covariance function, but the mean @mgiiun variance of/ andYy are
equivalent.

Based on this fact, we suggest that spatial HAC and bootsstapators na ively applied to the
population weighted choropleth m&jy will generate consistent estimates of the long run variance
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o2 for the latent random variablg.
We restrict ourselves in the current paper to block bogtstjaplications taYy, but HAC
estimators are being pursued elsewhere by the author.

3 Resaults

In this section we present preliminary Monte Carlo resultsalestrating the finite sample per-

formance of the block bootstrap applied to the weighted @bleth map. The Monte Carlo sim-

ulations were conducted using as regions 459 census traatg® sgq. km. region in Denver as

depicted in Figure 1. This square region was discretizedart00x400 grid, with each cell having

size 100 m x 100 m. The population datdds) is obtained by discretizing the population at the
block level to this grid, and is depicted in Figure 2. The enstudy region contains a population
of approximately 1.8 million persons.
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Figure 1. Census Tract Boundaries Figure 2: Population Density (unit distance
is.1 km)

Each Monte Carlo simulation, a multivariate Gaussian randaneble was simulated and
aggregated into the census tracts. The spatial covariandelrwas the spherical model with sill
10 and a nugget with sill 1. The Monte Carlo experiments wepeaed for range parameters of
.5 km and 2 km.

Each experiment consists of 500 realizations of the randeld. fiFor each realization, 199
block bootstrap samples were created. The bootstrap sarmmeconstructed by randomly sam-
pling blocks of contiguous cells. The experiment was regebdor blocks with sides of length
10, 20, 25, 40, 50, 80 or 100 grid cells long. For each bogisteplicate map, the population
weighted mean was calculated. From the 199 estimates ohthple mean, bootstrap estimates
of the standard error of the sample mean (i.e. the long-ruamnee) were calculated.

The MSE of the naive bootstrap estimate of the long-run wagdor the point dat& and
the aggregate dafgy are displayed in Figure 3. The true value for the long-runavere from
which the MSE was calculated was obtained by calculatingstardard error of the mean from
5000 simulations of the random field. As can be expected,gtimates using the aggregate data
are less efficient than those from the point data. In addiiias also clear that the MSE for the
estimator calculated from aggregate data is minimizedrgetablocksizes than that for the point
data.

The actual 90% confidence intervals are shown in Figure 4 cleiar that the intervals obtained
using the point data are closer to their nominal 90% levels interesting to observe, however,
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that the coverage of the confidence intervals at the optinoakbize does not change much for
the aggregate data as the range of spatial correlatioraisesdor the aggregate data, whereas the
coverage using the point data diminishes significantly.
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Figure 3: Mean Square Error of long-run Figure 4: Simulated 90% Confidence Inter-
variance. Point estimate dashed, aggregatevals. Point estimate dashed, aggregate esti-
estimate solid. mate solid.
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