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1 Introduction

Inference for random processes depends on the estimation ofthe long-run variance of a statistic.
Commonly used approaches in time series analysis for estimating the long-run variance include
bootstrap approaches and the class of heteroskedasticity and autocorrelation consistent covariance
estimators. These approaches have been generalized to dealwith point processes and continuous
spatial processes, but areal data have received only scant attention as of yet. This paper does not
provide any new theoretical results, but provides a heuristic argument why these methods might
work with census-type data. This argument is quite trivial,but we can provide no evidence of
the application of these methods in the literature. Preliminary results demonstrating the simple
application of block bootstrap methods to these data are presented.

The two primary ways of estimating the long-run variance of amean are i) heteroskedasticity
and autocorrelation (HAC) variance estimators and ii) bootstrap and subsampling methods that re-
sample the data in blocks that are large enough to preserve much of the dependence in the original
dataset. The HAC methodology consists of a weighted sum of the empirical covariance matrix –
assigning weights in such a manner that positive definiteness is ensured (Newey and West, 1987).
Importantly for the current paper, this method may be alternatively represented as an estimator for
the spectral density of the process at the zero frequency. This method has seen only limited appli-
cation in spatial settings to date. Conley (1999) proposes the method for application to stationary
data located on a lattice. Anselin (2002), however, suggests that this method is inappropriate for
areal data on a lattice since the stationarity assumption isnot tenable in many circumstances.

A HAC estimator for areal data has been proposed recently by Kelejian and Prucha (2007) (KP
henceforth). That estimator too presupposes that the data are represented on a lattice, but does
not place strong stationarity assumptions on the data. Rather than assuming stationarity directly,
Kelejian and Prucha instead assume that the sum of the covariance matrix is appropriately bounded.
The KP estimator, however, presupposes that the areal sampling units can be situated on a lattice
with an appropriate (not necessarily Euclidean) metric characterizing the distance between areal
units. Kelejian and Prucha further demonstrate that the estimator remains consistent if the lattice
metric contains measurement error.

In contrast to the HAC estimators, the bootstrap methods forestimating the long-run variance
rely on sampling large, contiguous blocks of data, so that the dependence structure is preserved
within each block. B̈uhlmann and K̈unsch (1999) show that the block bootstrap variance estimators
are asymptotically equivalent to weighted periodogram estimators of the spectral density at the zero
frequency.

The bootstrap has been studied much more that the HAC variance estimator in the context
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of spatially dependent data. Bootstrap methods for regularly and irregularly sampled spatially
dependent punctile data have been proposed in the literature. See Lahiri (2003); Loh and Stein
(2004); Lahiri and Zhu (2006) and the references therein. The block bootstrap has not been applied
in an areal data sampling context yet.

The current paper offers a heuristic argument suggesting that process of averaging point data
in to areal sampling units does not alter the value of the spectral density at the zero frequency. This
suggests that block bootstrap and HAC methods may be easily translated to the setting of areally
averaged data. In this paper, we pursue the behavior of the naı̈ve block bootstrap when applied
to areally averaged data, as represented by a choropleth map. It may also be mentioned that the
HAC and bootstrap methods are not mutually exclusive. Davison and Hinkley (1997) shows that
the bootstrap may be improved by choosing an appropriate studentization of the statistic; the HAC
estimator offers such a studentization. Simulation evidence suggests that that the performance
of the bootstrap method is improved by studentizing the estimate by the HAC variance estimate
(Gonçalves and White, 2005; Romano and Wolf, 2006).

2 Problem Formulation

Let a population be represented by{Z(s), N(ds)}, whereZ(bfs) is a covariance stationary random
field on the spatial domainD ∈ ℜ2 with covariance functionC(h), andN(ds) is the population
within regiond(s). Let Y (s) denote the representation ofZ(s) by a choropleth map defined by
regionsvk. The set{vk : k = 1, . . . , K} are a complete partition of the domainD into K disjoint
subregions. The population of each region isNk =

∫
s∈vk

N(ds). The choropleth variable is thus
related to the underlying population via

Y (s) =
∑

k

I(s ∈ vk)
1

Nk

∫
s∈vk

Z(s)N(ds).

The variableY (s) is simply the value of the choropleth map at any locations. In typical ap-
plications with census-type data, the sample information available to the researcher is the set
{Y (s), Nk, vk}, or occasionally{Y (s), N(s), vk} if a detailed population density map is available.

We restrict ourselves in the current case to making inference on the variableµZ . The distribu-
tion of the sample mean ofZ (were it available) is

√
N(Z̄ − µZ) ∼ N(0, σ2

∞
), whereσ2

∞
is the

long run variance ofZ.
We will consider here, the population weighted choropleth map YN(s) = Y (s)N(ds). It is

obvious that the population weighted mean of the choroplethmap is equivalent to the mean of the
underlying population, i.e.µZ =

∫
Y (s)N(ds) = ȲN . It can also easily be shown that the spectral

density at the zero frequency of the population weighted choropleth variableYN is equivalent to
the spectral density at the zero frequency of the random variableZ, and that the spectral density
of YN is continuous (details appear in the full-length version).These two facts suggest that the
population weighted choropleth mapYN has the same mean and long-run variance as the the latent
population variableZ. In general, the statistics ofYN andZ are not equivalent, andYN does
not have a stationary covariance function, but the mean and long-run variance ofZ andYN are
equivalent.

Based on this fact, we suggest that spatial HAC and bootstrap estimators na ively applied to the
population weighted choropleth mapYN will generate consistent estimates of the long run variance
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σ2

∞
for the latent random variableZ.
We restrict ourselves in the current paper to block bootstrap applications toYN , but HAC

estimators are being pursued elsewhere by the author.

3 Results

In this section we present preliminary Monte Carlo results demonstrating the finite sample per-
formance of the block bootstrap applied to the weighted choropleth map. The Monte Carlo sim-
ulations were conducted using as regions 459 census tracts in a 40 sq. km. region in Denver as
depicted in Figure 1. This square region was discretized into a 400x400 grid, with each cell having
size 100 m x 100 m. The population dataN(ds) is obtained by discretizing the population at the
block level to this grid, and is depicted in Figure 2. The entire study region contains a population
of approximately 1.8 million persons.

Figure 1: Census Tract Boundaries Figure 2: Population Density (unit distance
is .1 km)

Each Monte Carlo simulation, a multivariate Gaussian randomvariable was simulated and
aggregated into the census tracts. The spatial covariance model was the spherical model with sill
10 and a nugget with sill 1. The Monte Carlo experiments were repeated for range parameters of
.5 km and 2 km.

Each experiment consists of 500 realizations of the random field. For each realization, 199
block bootstrap samples were created. The bootstrap samples are constructed by randomly sam-
pling blocks of contiguous cells. The experiment was repeated for blocks with sides of length
10, 20, 25, 40, 50, 80 or 100 grid cells long. For each bootstrap replicate map, the population
weighted mean was calculated. From the 199 estimates of the sample mean, bootstrap estimates
of the standard error of the sample mean (i.e. the long-run variance) were calculated.

The MSE of the na ive bootstrap estimate of the long-run variance for the point dataZ and
the aggregate dataYN are displayed in Figure 3. The true value for the long-run variance from
which the MSE was calculated was obtained by calculating thestandard error of the mean from
5000 simulations of the random field. As can be expected, the estimates using the aggregate data
are less efficient than those from the point data. In addition, it is also clear that the MSE for the
estimator calculated from aggregate data is minimized at larger blocksizes than that for the point
data.

The actual 90% confidence intervals are shown in Figure 4. It is clear that the intervals obtained
using the point data are closer to their nominal 90% level. Itis interesting to observe, however,
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that the coverage of the confidence intervals at the optimal blocksize does not change much for
the aggregate data as the range of spatial correlation increases for the aggregate data, whereas the
coverage using the point data diminishes significantly.
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Figure 3: Mean Square Error of long-run
variance. Point estimate dashed, aggregate
estimate solid.
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Figure 4: Simulated 90% Confidence Inter-
vals. Point estimate dashed, aggregate esti-
mate solid.
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