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1. Introduction  
There are plenty of statistical methods and computer algorithms that can be used to find 
spatial disease clusters, yet simply finding the clusters is only the beginning of the 
knowledge discovery process (Fayyad et al. 1996).  Once a cluster is found, an 
explanation for its existence needs to be hypothesized, and this task of identifying 
potential causes for the clusters is currently left to the epidemiologist.  One computational 
approach to this problem was tried in the Geographical Explanations Machine (GEM) 
(Openshaw and Turton 2001), although it was largely unusable due to the very lengthy 
computation times involved.  Instead of searching for correlations between the locations 
of the clusters and other variables in the dataset, as in GEM’s approach, this research 
aims to identify potential causes based on the shape of the cluster.  To do so, it adapts 
existing computer vision and pattern recognition techniques to the problem of 
geographical cluster analysis. 
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Figure 1. The software system of which this research is a part. 
 

This works by comparing the shape of a detected cluster to those in a database 
containing shapes representative of various geographic processes.  The entire 
computational process from cluster detection to hypothesis generation is shown in figure 
1.  This paper focuses on two sections of this system: the shape representation and pattern 
matching processes.  Shapes are represented by a set of shape statistics that are computed 
for each shape and a pattern recognition system then assigns the detected cluster to one or 
more potential causes based on what shapes in the pattern/process database have similar 
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values of the shape statistics.  In this case, the shape statistics are the set of seven moment 
invariants developed by Hu (1962) and the classification system is a KNN classifier 
(Hastie et al. 2001, pp. 415-420).  This paper reports on experiments into the ability of 
the Hu’s invariants paired with a K-Nearest Neighbor (KNN) classifier to distinguish 
between different classes of geographical shapes in a pattern/process database. 

 
2. Testing the Invariants 
Two experiments were conducted with a set of shapes, classified at different levels of 
aggregation.  The shapes are, where possible, taken from Pennsylvania.  The first 
experiment contained twelve classes, as shown in table 1.  This first experiment had a 
fine level of distinction between the classes, creating road, river, and soil shape classes 
for each of the physiographic regions of Pennsylvania because of the expected 
correlations between the terrain contours of an area and the shapes of roads, rivers, and 
soil regions in that area.  Thus the different terrain patterns of the different physiographic 
regions could give rise to different road, river, and soil region shapes.  Shapes for the 
roads and rivers were generated by drawing a 250-meter buffer around the centre lines 
from a GIS data layer.  The shapes of the soil regions are taken directly from a polygon 
GIS data layer.  The shapes for all classes were taken from publicly available GIS data 
layers from PASDA (Pennsylvania Spatial Data Access) and the USGS (United States 
Geological Survey), and there are 350 shapes in each class. 
 The second test condenses these twelve classes down to four classes: urban areas, soil 
regions, roads, and rivers, using 450 shapes from each aggregated class.  The 450 shapes 
are evenly divided between the subgroups for roads, rivers, and soil regions. 
 
Urban areas in the United States Rivers in the ridge and valley region 
Roads in the PA ridge and valley region Rivers in the Allegheny plateau 
Roads in the Allegheny plateau in PA Rivers in the PA piedmont 
Roads in the piedmont region of PA Soil regions in the ridge and valley region 
Roads in Pittsburgh Soil regions in Allegheny plateau 
Roads in Philadelphia Soil regions in the PA piedmont 

Table 1. Shape classes in the 12-class test. 
 
 
2.1 About the Invariants 

Moment invariants are derived from the theory of statistical moments (Casella and 
Berger 2002, pp. 59-68).  Hu (1962) developed seven invariants for computer vision by 
applying the concepts from bivariate statistical moments to pixel values in gray-scale 
images.   

Two-dimensional statistical moments,  take the form of equation 1: the expected 
value (denoted ) of the two variables, X and Y, raised to integer powers, p and q.  In a 
geographical context, X and Y are spatial variables and  is a function that varies 
across space. 
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Extending these moments to image processing,  is the intensity of the pixel at 
.  Furthermore, for black and white images, 

),( yxf
),( yx 1),( =yxf  if the pixel is black and 0 if 

it is white.  To make these moments invariant to location, so that if a shape is moved in 
any direction, the moment values remain constant, we shift the x and y values so that the 
shape’s centroid is at (0, 0), giving centralized moments, qp ,µ , in equation 2.  
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Next, the centralized moments are normalized with respect to area, giving normalized 
moments, qp ,η  in equation 3. 
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Finally, the seven invariants in equations 4 through 10, which are also made invariant 
to rotation, are given by Hu (1962). 
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To improve classification rates, the natural logarithm of the absolute value of the 

seven invariants are used instead of the invariants themselves, because the invariants 
often have very low absolute values (less than 0.001), so taking the logarithm of the 
invariants reduces the density of the invariants near the origin.  Also, the values of the 
natural logarithms are then converted into standardized z-scores before classification. 

 
 
2.2 Pattern Recognition with a KNN Classifier 
Once these seven invariants are computed for each shape in the database, a classification 
algorithm can be applied to the seven-dimensional shape vectors in the data space created 
by the invariants to determine how well these invariants distinguish between the twelve 
shape classes listed in table 1 or between the four aggregated shape classes.   
 This research used a K Nearest Neighbor classifier (Hastie et al. 2001, pp. 415-420) 
because a KNN classifier does not make any assumptions about the form of the 
distribution of the vectors in the data space.  A preliminary examination of the 
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distribution suggests a skewed distribution rather than a standard normal distribution, so a 
classifier that does not rely on a particular distribution is preferred. 
  
3. Results 
Classification accuracy rates for all values of k between 1 and 100 on both the 12-class 
and the aggregated 4-class tests were computed using a leave-one-out validation method 
in which each shape’s class was estimated as the class that is most frequent in the k 
nearest neighbors in the rest of the dataset.  Figures 2 and 3 show the accuracy rate for 
each class and value of k in the 12-class and 4-class tests respectively.  
 A confusion matrix for the 12-class test, which is not included because of space 
considerations, shows that for many of the misclassified shapes, they are still classified in 
the same general category, i.e., urban areas, roads, rivers, and soils. 
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Figure 2.  Accuracy rates for each class on the 12-class test. 
 
4. Discussion 
In both the 12-class and 4-class tests the KNN classification of the standardized log 
invariants was better than random (which would give accuracy rates of 0.083 and 0.25 
respectively) for most classes and most values of k.  The worst classification was that of 
soils in the 4-class test.  Further investigation shows that the classification for soil region 
shapes in the piedmont region are often misclassified as urban area shapes, giving this 
sub-group an accuracy rate well below random in the 4-class test (e.g., an accuracy of 
0.14 when ), which decreases the accuracy of the combined soil class. 35=k
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Figure 3. Accuracy rates for each class on the 4-class test. 
 
 Further testing will determine the ability of this system to identify the shape classes in 
the context of cluster detection and analysis.  This will be done by generating a synthetic 
dataset containing disease clusters among a background population where the clusters are 
based on shapes from this pattern/process shape database, running a cluster detection 
algorithm on the synthetic dataset, and classifying the detected clusters based on their 
shapes.  If these seven invariants and a KNN classifier fail, other image processing 
statistics, such as Legendre or Zernike moments (Teh and Chin 1988), and other pattern 
recognition classifiers, such as a maximum likelihood classifier (Hastie et al. 2001, pp. 
229-231), can be used. 
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