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1. Introduction 
For many applications, we need to represent and simulate dynamic objects or phenomena 
to better understand, analyze, predict and manage their behaviours. Some examples of 
this application are: simulation of fluid flows, meteorological and environmental 
applications, aircraft control, ship navigation, and inter-satellite communication, etc. Here, 
objects are embedded in 3D environment and are free to move and interact with each 
other over time and space. This implies that we often need to be able to track and make 
quarries on the state of objects and their neighbours in the past, present and future time.  
Then, it is essential to be able not only to define 3D topological relations between the 
moving objects in 3D environment but also to update these spatial relationships as the 
objects change their position in time. However, the current GIS data structures are unable 
to accomplish these tasks as most of them are static and limited to 2D space.  
 
In order to overcome theses problems, we propose and implement a 3D kinetic 
topological data structure based on Delaunay tetrahedralization which has ability to deal 
with static and dynamic objects at the same time. In addition, the structure is capable of 
maintaining and updating the spatial relations between object even when they are moving. 
In term of objects, it should be noted in some applications there is an exact definition of 
objects such as aircrafts for aircraft control. While, in other applications such as 
simulation of a fluid flow, with objects we refer to discrete elements (particles) that 
represent continuous phenomena. The proposed data structure has the potential to manage 
the moving object in both cases. The topological relations between the moving objects 
are created and maintained by Delaunay tetrahedralization which is described in more 
details in the following section.    
 



2. Delaunay Tetrahedralization 
Delaunay Tetrahedral (DT) for a set of points in 3D space is defined by the partitioning 
of the space into tetrahedrons based on the empty circumsphere test (fig.1). It means the 
circumsphere of each tetrahedron does not contain any other point of the data set. Thus, 
among all the possible tetrahedralization of the set of points, it introduces a unique 3D 
mesh, except when there are degenerate cases in the set (ex. if five or more points are co-
spherical in 3D space) (Gold et al. 2005). 
 
There are several methods to construct Delaunay tetrahedralization. In static Delaunay 
data structure, the whole data set (points or objects) is known prior to the partitioning of 
the space according to the empty circumsphere test such as Sweep line method or Divide 
and conquer method. Here, the structure can not be updated locally and should be 
reconstructed globally if we need to inserting or deleting an objects from the data 
structure. While in a dynamic data structure, it is not necessary to know the whole data 
set prior to Delaunay tetrahedralization, and new objects (point) can be inserted or 
removed from the existing data structure. On the other words, local modification in the 
data structure is allowed after any change. 
 
 

                  
Figure 1. Delaunay Tetrahedralization; circumsphere of each tetrahedron does not contain 

any other point of the data set. 
 
Kinetic Delaunay data structure allows several objects (points) to move simultaneously in 
the mesh with the capacity for local topology updating. To construct a kinetic Delaunay 
data structure, it is essential to use a dynamic Delaunay tetrahedralization method. 
Among the various methods that are studied in the field of computational geometry, the 
incremental method is the only dynamic method. Therefore, we use this method to 
develop a 3D kinetic data structure for the moving objects management in a 3D dynamic 
environment, as seen in the next section.    
 
3. Kinetic Delaunay Tetrahedralization  
In order to extend a dynamic DT to a kinetic DT, we first describe the moving of one data 
point (object) from its initial position toward a given destination within the 3D mesh and 
then the method is extended to several moving points in a 3D space.  
 
3.1. Moving a point in a Delaunay Tetrahedralization 
Point movement changes the configuration of the tetrahedrons containing the moving 
point (its stars) and its neighbours. Continuous movement of a point in the 3D mesh can 
be implemented by inserting, deleting and re-inserting the point in its new position within 



mesh that is a computationally expensive operation. However, if the location of the point 
is changed without any topological changes, the spatial relationship dose not need to be 
updated. It means: “no topological event happens” Therefore, to present the continuous 
movement of a point, it is possible to detect all topological events on the trajectory of the 
point and move the point to its new positions, one by one on its trajectory, until the point 
arrives at its destination. In a 3D DT, a topological event occurs when a point moves in or 
out of the circumsphere of tetrahedron. This must be detected to preserve the empty 
circumsphere criterion and then the topological modification must be done locally (fig.2).   
 

 
Figure 2. Topological event; spatial relationship dose not need to be updated as long as 

the vertex p is moved within the yellow polyhedron in 3D (from top). 
 
 
The proposed algorithm for the moving points is a generalization to 3D of Mostafavi and 
Gold’s method in 2D (2004). In this algorithm, to detect the topological events when one 
point moves in the mesh, only the spatial information of its neighbouring tetrahedrons are 
used and the rest of tetrahedra of mesh do not need to be tested (Albers et al. 1998, 
Gavrilova and Rokne 2003a, Gavrilova and Rokne 2003b, Guibas and Russel 2004, Roos 
1997). In order to consider all possible topological events on the trajectory of the moving 
point, we need to define adjacent imaginary and real tetrahedra in the Delaunay 
tetrahedralization with respect to moving point. In figure 
2, AEB∆ , BFC∆ , CGD∆ and DHA∆ are examples of  real triangles in 2D and ABC∆ is an 
example of an imaginary triangle that would exist if p was moved out of its imaginary 
circumcircle. 
 
To move a point from its actual position towards a given destination, it is essential to 
move the point step by step to the closest topological event and make appropriate local 
updates. The closest topological event ( mint ) is the location where intersection between 
the circumsphere of the real or imaginary tetrahedra with the trajectory is closest. For this 
purpose, a simple test that computes the intersection between a line and a sphere is used. 
The geometric object moves by replacing each of its coordinates with a function of time:  
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Where D is the distance of moving point p to its destination and Dt ⋅  is the closet 
topological event distance. Substituting the equation (1) into the equation of a sphere 
gives a quadratic equation. Regarding this equation, the three possible line-sphere 
intersections are:  

• No intersection,  
• The sphere is tangent to the line (Point intersection),  
• The line intersects the sphere (Two intersection points).  

In addition, since we use the relative distance, the intersection will be t=0, 0<t<1 and t>1, 
if moving point is at the origin, between the origin and the destination or after its 
destination, respectively. We ignore t<0 that means intersection occurs before the origin.  
 
In practice, we move the point to the new position by deleting it from its current position, 
re-insert it in the new position (closest topological event) and make appropriate local 
updates. To do this, we need some dynamic operations in 3D space. The most important 
operations are:  
 

• Point location (Walk): The task of the point location operator is finding the 
tetrahedronσ  within an existing 3D mesh that contains the query point p.  

 
• Insert: this operation inserts a new point in the existing structure. The Insert 

operation calls point location operator to find the tetrahedron containing p (σ ) 
and splits σ  into four tetrahedrons, each having p as a vertex.  

 
Figure 3. Flip 14, the tetrahedron that contains the new added point is divided to four new 

tetrahedrons by connecting the new point to the vertices of the tetrahedron. 
 

Optimization (Flip): an optimization operator is a local topological operation that 
modifies the configuration of adjacent tetrahedrons to satisfy the Delaunay 
criterion (i.e. empty circumsphere test). This condition is verified via a 
determinant computation (equation 2), this determinant test if point p is inside, 
outside or lies on circumsphere of a tetrahedron (a, b, c and d are tetrahedron 
vertices). When the determinant result is negative, it means that the tetrahedron is 
not Delaunay and a flip (optimization) operation must be performed. 
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For example in some cases to optimize the new tetrahedron, two neighbour 
tetrahedrons convert to three tetrahedrons (flip 23) with respect to the Delaunay 
criterion or vice versa (flip 32)(fig.4). 
 

 
Figure 4. Optimizing the new triangles with respect to the Delaunay criterion by flip 23 

and flip 32 
 

• Delete: This operation removes a point from an existing mesh. Deletion consists 
of locating the point p to be deleted and restructuring the configuration of the 
tetrahedral incident to p with a sequence of flips; for example, when a point is 
removed the adjacent tetrahedrons should be merged together.   

 
In the proposed algorithm, the geometrical and topological information are stored based 
on 3D Tetrahedron data structure, which included every tetrahedron by its four pointers 
for its points (objects) and four pointers to its four adjacent tetrahedral. 
 
3.2. Moving several points in a Delaunay Tetrahedralization 
In order to manage the motion of several points in 3D space, we need to compute the 
topological events of all moving points at the same time and then process them in order. 
Hence we compute the time taken to reach their closest topological event )( tt  for each 

point that is defined:
v
dtt = , where d is the distance to the closest topological event and v 

is velocity of point. Furthermore, for each point, a global time )( gt  needs to be kept that 
is the closest topological time of each point since the start of the simulation ( 0=gt ): 
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Where i
ct is the time that it takes for each point to move for its origin to its current 

position. 
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Figure 5. The three types of time needed for moving several points at the same 

time ),,( tcg ttt . 
 



 
We put the global times in a priority queue. The point with smallest global time is 
processed first i.e. point is moved to its new location and necessary updates in the 
topological relationships are made. Following any motion, the priority queue is also 
updated. This process is reiterated until all points are moved to their respective 
destinations.    
 
There are some degenerate cases that can arise during the movement of one or several 
points at time such as sphere tangential to the trajectory of moving point, co-spherical 
points, etc. in addition, collision cases must be managed. In our research work, we deal 
with these complex cases.  

4. Conclusion  
In this paper the development and the implementation of a 3D kinetic topological data 
structure based on Delaunay tetrahedralization was discussed. The proposed data 
structure allows the establishment and analysis of the topological relations between the 
objects and their updates. The structure provides the necessary operations to easily track 
the moving objects in 3D environment and make necessary queries on their location and 
configuration at any time. Hence, the proposed data structure has many significant 
potential for wide variety applications that need to represent and manage moving objects.   
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