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1. Introduction  
As human beings, the choices we have available to us in the future often depend on the 
decisions we made in the past.   This phenomenon can also apply to route choices, yet 
most research focuses only on the case of how good routes are chosen in a single time 
period.  It is important to understand the qualitative and quantitative differences between 
routes chosen for a single time period and routes chosen over an extended period when 
developing realistic models of human behaviour.  In this paper, we study these 
differences for the harvesting variant of the travelling salesperson problem (TSP). 

The TSP is a well established combinatorial optimisation problem studied in 
operations research. In its general form, the TSP seeks the shortest tour given a set of 
points and the pairwise distances between these points. Among the many variations of the 
general TSP, there are a class of problems inspired by finding efficient tours for vehicles 
required to pickup and/or deliver goods at each of the points in the tour (Parragh, Doerner 
et al. 2008). There is also a more specific form of this problem that has applicability in 
the harvesting of natural resources. 

In harvesting problems, there may be multiple sites at which harvesting can be 
performed, and multiple existing deployments of harvesting equipment. The operator 
must efficiently redeploy the harvesting equipment from their current sites to the new 
harvesting locations. Note that the concept of harvesting here is a general one; examples 
of harvesting processes include environmental data collection, stock grazing and 
commercial beekeeping. The common factor is that homogeneous objects are redeployed 
into an environment in which the harvested resource is renewed over time. 

The most important distinction with harvesting problems from the standard TSP and 
its variants is the dependency between temporally adjacent solutions. Traditional pickup 
and delivery problems assume no dependence between the solutions for any two 
problems. However, in harvesting problems the delivery locations for any given solution 
assume the role of pickup locations when the problem is next solved. When there are 
more options for locating an object than there are objects to occupy the locations, this 
introduces the possibility that adopting the optimal solution in the current iteration may 
effectively penalise the next iteration and thus lead to a suboptimal solution overall. 

A second consideration is the case where the delivery locations visited are not 
considered to be equally rewarding. Thus the attractiveness of a delivery site depends on 
both the travel costs to reach it and the profit gained from it (Feillet, Dejax et al. 2005). In 
this sense, tours are planned in such a way to maximise economic utility. 

The hypothesis of this experiment anticipates the interaction of these two effects, and 
is thus: 



• Solution performance for the harvesting variant of the TSP improves with 
increasing knowledge of future configurations, known as foresight. 

• In the case where TSP locations have unequal attractiveness, the significance 
of foresight is reduced. 

The logic behind the first of these points is intuitive; improved capabilities to predict 
the future and react accordingly are always associated with improved outcomes in many 
fields of human endeavour. However, the interpretation of the second point is less 
obvious; it raises the possibility that focussing on the more profitable (and ignoring the 
less profitable) locations in the current iteration can yield good performance without 
having to plan ahead. 

2. Solution characteristics for the harvesting TSP 
In order to examine the effects of foresight and heterogeneity on the harvesting variant of 
the TSP, a simulated Euclidean space was created and populated by randomly generated 
locations.  Here, locations represent the sites at which harvesting is performed, and are 
occupied by notional objects representing the harvesting equipment to be relocated at 
each iteration.  The locations are grouped into iterations as shown in fig 1, with the 
numbers within each circle indicating the iteration. A central depot, indicated by the 
circle labelled “0” is defined. Tours are defined to start at the depot, then pickup objects 
from the delivery locations chosen in the last iteration, deliver these to locations chosen 
in the current iteration and then return to the depot. 

In the simulation shown there are four objects to be relocated over three iterations and 
their starting locations are given by the points labelled “1”.  In each iteration (designated 
by r, where r = {2, 3, 4}), there are seven possible delivery locations for the four objects 
picked up in that iteration.  These locations are labelled according to their r-value.  As the 
vehicle is assumed to have unit capacity, each tour must interleave pickup and delivery 
locations. That is, in every solution a visit to a chosen delivery location will always be 
performed directly after a visit to one of the mandatory pickup locations.  The temporal 
linking between iterations occurs because the chosen delivery locations in any particular 
iteration become the pickup locations in the next iteration. 

 
 
 



 
Figure 1: Random location distribution for three iterations of harvesting TSP 

 
There are two categories of optimal tours; iteration optimal solutions and overall 

optimal solutions. In the iteration optimal solution case, the algorithm seeks the optimal 
solution for the current iteration only; this then determines the starting locations for the 
next iteration where the process is repeated. The overall optimal solution algorithm finds 
the single best solution across all iterations. Thus whilst in the first iteration the overall 
optimal solution will have a cost greater than or equal to the iteration optimal solution, it 
is guaranteed to have a cost less than or equal to the iteration optimal solution across all 
iterations. Iteration optimal and overall optimal solutions to the problem outlined in fig 1 
are illustrated below in fig 2. 

In the first iteration, the iteration optimal solution yields a path with length 2504 units.  
One of the delivery locations chosen is a point in the lower left corner of the simulation 
space.  The iteration optimal solution algorithm, lacking any foresight, ignores the fact 
that this location is a comparatively large distance away from any possible delivery 
points in the next iteration.  However, the overall optimal solution algorithm has 
complete visibility of all future iterations and the ability to determine the optimal solution 
across the entire duration of the simulation and thus outperforms the iteration optimal 
solution, in this case already by the end of the second iteration. 



 
Figure 2: Iteration optimal and overall optimal solutions for a particular random 

configuration across three iterations 
 

3. Comparison of homogeneous and heterogeneous location 
attractiveness 
To investigate the average behaviour of both strategies, we ran large numbers of random 
simulations.  As shown in table 1 and fig 3, a solution optimised across multiple 
iterations significantly improves upon that optimised for a particular iteration alone. This 
result applies both for the cases of homogeneous and heterogeneous location 
attractiveness. Whilst the magnitude of the performance improvement grows with 
increasing foresight ability, the rate of growth slows. 
 



 
Figure 3: Boxplots for 1000 random distributions and differing numbers of iterations 

 
 

r 
Homogeneous
attractiveness 

mean 

Heterogeneous
attractiveness

mean 

Two-sample t-test 
Two-sample 

Wilcoxon test 

p 95% CI p 

2 2.67% 2.22% 0.008 0.12% 0.80%  < 0.001 
3 4.09% 3.61% 0.02125 0.07% 0.88% 0.009537 

4 4.90% 4.47% 0.03866 0.02% 0.83% 0.03444 
5 5.37% 4.74% <0.001 0.26% 1.00%  < 0.001 
6 5.60% 5.17% 0.01392 0.09% 0.79% 0.01018 

 
Table 1. Results for 1000 randomly generated location distributions 

 



The results reject the second hypothesis that when locations are given heterogeneous 
attractiveness that the performance difference would greatly reduce.  A decrease of the 
mean performance difference was observed for all numbers of iterations, and this 
decrease was significant at the 5% level. However, as the range of the mean difference 
between the two samples was less than 1%, the impact of heterogeneous attractiveness 
was small in absolute terms. 

4. Conclusion 
It would appear from these results that heterogeneous location attractiveness simply 
transforms the Euclidean problem space into a non-Euclidean (and non-two-dimensional) 
space where no fundamentally new efficiencies (such as a focus on the most attractive 
locations) can be exploited. As heterogeneous location attractiveness is more 
characteristic of the application domains, this raises a further challenge to determine how 
humans find good tours as no evidence for the validity of previously investigated 
heuristics or other information discarding heuristics has yet been found.  In particular, 
techniques that diminish the need to plan ahead whilst still yielding acceptable 
performance will be a focus for further research. 
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